REX-USBol

USB-SPIl/T2C Protocol Emulator

User's Manual

2021.07

Rev. 3.0

RATOC

Systems, Inc.

[

REX-USB61 USB-SPl/I2C Protocol Emulator

1. Introduction

2. Setting up on Windows

3. SPI/I2C Control Utility

4. API Function reference

(71-1) Specifications of the product
(1-2) Package contents

(1-3) Cable specifications

(1-4) Each mode

(1-5) Connection of a SPI device
(1-6) Connection of a I2C device

(2-1) Setup on Windows 10/8.1/7/Vista x64

(2-2) Setting up on Windows Vista x32

(2-3) Setting up on Windows XP x32/XP x64

(2-4) Confirmation of setting REX-USB6'1

(2-5) Uninstallation on Windows 10/8.1/7/Vista x64

(2-6) Uninstallation on Windows Vista x32/XP x32/XP x64

(3—-1) Functions of the Utility

(3-2) Explanation of the Utility

(3-3) Example to control by using this utility
(3-4) Grammar for script description

(3-5) Example of script

(4-1) Using on VC

(4-2) Using on VB / Visual C#

(4-3) List of API functions

(4-4) Detail of API functions

(4-5) Error Codes

(4-6) Sample applications

(4-7) How to develop application using this API functions

h

1.Introduction Page.1-1

1. Introduct1on

(1-1) Specifications of the product
REX-USB61 enables you to easily control from a PC a variety of devices with
SPI/I2C bus.

[This product comes with SPI/I2C control utility]
This bundled utility can control SPI/I2C, GPO(General Purpose Output) and
save a setting file or log file.

For further information, please refer to Chapter 3.

[This product also comes with API library and sample program]
Making an application software with the API library enables you to control

the following:

Can provide a power supply of 3.3V or 5.0V(IN.B.] current is under
100mA) from this product to an external device.

Can provide from 1.8V to 5.0V an input/output level of SPI/I2C/slave
port/parallel out port as long as a power supply terminal of this product
1s provided by an external voltage.

Can change SPI/I2C, master/slave(SPI is a master only)

Can specify a frequency of SPI/I2C bus.

Can output a digital of 4bit at I2C mode.

And this product comes with program source codes by which you can use API

library.

(For further information on functions, please refer to (4-4) at Chapter 4.

Further information on applications, please refer to (4-6) at Chapter 4.)

[The latest firmware is available through our website]
You can update firmware in order to add or change specifications on this
products. The latest firmware and update program is available through our

website.

1.Introduction

Hardware specifications

Item

Host Interface

Page.1-2

Specifications

USB2.0 Full Speed Device

Connector USB mini B connector
Voltage 5V (via USB bus power)
Consumption Current | 100mA
SPI Master Max. frequency 12MHz

Device Interface

I12C Master/Slave

Frequency 47TKHz~1MHz

Input/Output level [Output] 3.3V/5V

[Input] 1.8V - 5.0V is enabled with external P/S
Dimension 57(W) x 75(D) x 18(H) mm
Weight Approx.60g (except cable)
Operating Temperature:5~55C Humidity:20~80%
Environment (non condensing)

Support Operating System

Windows 10/8.1/7/Vista/XP

Software
Item
Setting file
for installation

File

USB61.inf

* Works both 32bit OS and 64bit OS

Description
Setting file for REX-USB61
(Windows Vista x32/XP x32/XP x64)

Installer for

SPI_script.txt

Installer USB61_Setup.exe Windows 10/8.1/7/Vista x64
Utility Usb61Uty.exe Utility to control SPI/I2C

. I12C_script.txt Script file for I12C bus control
Script file

Script file for SPI bus control

Sample program | EEPROMRWUty | Sample program to send/receive

(VC6.0/VB6.0/VB SPI/12C

2005/C#) I2cSlaveSample Sample program for I2C slave
usb61api.dll Library to control SPI/I2C devices
usb61def.h Header file for Visual C

Library usb61api.lib Library file for Visual C
usb6lapi.bas Module for Visual Basic
usb6lapi.vb Code file for Visual Basic

ActiveX control

usb61lapi.ocx

ActiveX control for REX-USB61

Uninstall utility

USB61_uninst.exe

Utility to delete INF file
(Windows XP)

* REX-USB61 can only use 1 device.
On the other hand, REX-USB61mk2 can use multiple devices.

1.Introduction Page.1-3

(1-2) Package contents
REX-USB61 package includes:
¥ REX-USB61
1 USB A — mini B cable
U SPI/12C cable
A4 Warranty Card

SPI/12C cable
(For specifications, please see a next page)

USB mini B(Female) connector

Power LED (Power On : Green Power Off : Off)

Access LED (Access : Orange Non-Access : Off)

1.Introduction Page.1-4

(1-3) Cable Specifications

The below explains the specifications of the cable bundled with REX-USB61.

Pin Housing Cable

Signal Usage
number color color

Input/Output of power supply for a
target device

1 Black Brown Power
(Output 5V or 3.3V @100mA)
(Input 1.8V -5V)
Input/Output of power supply for a
target device

2 Black Red Power

(Output 5V or 3.3V @100mA)
(Input 1.8V - 5V)

Clock for 12C
3 Black Orange | 1MHz - SCL | (401KHz - 1IMHz bus voltage 5V only)
(Pull-up resistance 10kQ)

Data signal for 12C
4 Black Yellow | 1MHz - SDA | (401KHz - 1MHz bus voltage 5V only)
(Pull-up resistance 10kQ)

Clock for I2C (47KHz-400KHz 1.8-5V)

5 Black Green SCL)
(Pull-up resistance 10kQ)

Data signal for 12C
6 Black Blue SDA (47KHz-400KHz 1.8-5V)
(Pull-up resistance 10kQ)

Clock signal for SPI

7 Black Purple SCK
(12MHz 1.8-5V)
Black Gray SDO Data out signal SPI (12MHz 1.8 - 5V)
Black White SDI Data in signal SPI (12MHz 1.8 - 5V)
10 Black Black Reserve N/A(Don’t use)

* Don’t use I12C 401KHz-1MHz(Pin#3,4) and SPI(Pin#7,8,9) at the same time.

1.Introduction

Page.1-5

Pin Cable
Housing color Signal Usage
number color
11 White(Gray) | Gray GND | Ground
12 White(Gray) Red GND | Ground
13 | White(Gray) | Orange | DOO | SSO for SPI/PORTO for 12C (1.8 - 5V)
14 White(Gray) | Yellow DO1 | SS1 for SPI/PORT1 for I12C (1.8 - 5V)
15 White(Gray) | Green DO2 | SS2 for SPI/PORT?2 for I12C (1.8 - 5V)
16 White(Gray) Blue DO3 | SS3 for SPI/PORTS for I12C (1.8 - 5V)
17 White(Gray) | Purple GND | Ground
18 White(Gray) Gray GND | Ground
19 White(Gray) | White N.C. | N.C.
20 | White(Gray) | Black N.C. |N.C.

(1-4) Each mode

The below explains master/slave mode on SPI /I2C bus.

Bus Operation
This mode can select a slave, send data,
SPI Bus | Master mode])
display data received from the slave.
This mode can send data to a particular
Master mode)]
[2C B address, display data received from the slave.
us
This mode can display data received to self
Slave mode
-address, send data to master.

You can select master mode or slave mode of REX-USB61 by the bundled

utility software or API library.

1.Introduction Page.1-6

(1-5) Connection of a SPI device
The below explains how to connect an EEPROM with SPI interface.

- Regarding power supply of REX-USB61

In order to provide power supply to a level converter IC on the
REX-USB61, it is required to connect the power pin of the REX-USB61 to
a power supply of a target device, even if the target device doesn’t have

power supply.

Inside of REX-USB61
|

5Vor3.3V .A/. Power

A

5V

USB PIC

10KQ
10KQ
—|10KQ

SDO

A
A\ 4

Level converter IC SDI

\ 4

SCK

A
A\ 4

DOx

[Caution]
When connecting/disconnecting a device, never provide power
to REX-USB61 nor the device.
(If you provide power to REX-USB61 or the device and connect
or disconnect the device, REX-USB61 will be broken.)

1.Introduction Page.1-7

SPI Connection(If a target device has power supply)

If a target device has power supply, please disable power supply by utility
software or application which uses an API library.
(The library is called usb61_power_control(). Refer to (4-4) at Chapter 4.)

Disable output of power Be sure to connect the A target device

supply of REX-USB61. power terminal. supply power.

v N

Power
—o/ ®
SDO SI
SCK 4 SCK | AT25080A
® ®

DOO0 #CS

DO1

4

DO3 | . 7777

GND ® ; Power

REX-USB61 SI

SO ATMEL:
SCK AT25080A
#CS

1.Introduction

Page.1-8

SPI Connection(If a target device doesn’t have power supply)

If REX-USB61 supply power(3.3V/5.0V) to a target device, please use utility

software or application which uses an API library.

(' The library is called usb61_power_control(). Refer to (4-4) at Chapter 4.)

REX-USB61 output
power supply.

Be sure to connect the

power terminal.

A target device doesn’t

supply power.

Power > Power
SDO . S1 .
®
b DOO #CS
DO1
DO2 +
99_3_ _ 7777
GND ® ; Power
REX-USB61 SI
30 ATMEL:

SCK AT25080A

#CS

1.Introduction Page.1-9

(1-6) Connection of a I2C device
The below explains how to connect an EEPROM with I2C interface.

- Regarding power supply of REX-USB61
In order to provide power supply to a level converter IC on the

REX-USB61, it is required to connect the power pin of the REX-USB61 to a

power supply of a target device, even if the target device doesn’t have power

supply.
Inside of REX-USB61
5Vor3.3V m Power
A
5V |
v
Pull up control I Pull up control
I [[
e g g g
54 X 1 X X
USB PIC = = = =
N | Level converter IC | > Sba
< > < » SCL
»| 1MHz-SDA
I |
i » 1MHz-SCL

[Caution]
When connecting/disconnecting a device, never provide power
to REX-USB61 nor the device.
(If you provide power to REX-USB61 or the device and connect
or disconnect the device, REX-USB61 will be broken.)

1.Introduction Page.1-10
I2C connection(If a target device has power supply)

If a target device has power supply, please disable power supply by utility
software or application which uses an API library.
(The library is called usb61_power_control(). Refer to (4-4) at Chapter 4.)

Disable output of power Be sure to connect the A target device supply
supply of REX-USB61. power terminal. power.
Power V :l]
~ - %l Power
T
I I
I I
SDA : 'SDA
| scL * [IscL | ATMEL Address
- AT24C02B 50h
GND —e }/
Power
REX-USB61 l
SDA
SCL | ATMEL: Ad5dlr§ss
AT24C02B

3

*1 The pull-up resistance on REX-USB61 1s 10KQ.

If necessary, add pull-up resistance.

1.Introduction Page.1-11
I2C connection(If a target device doesn’t power supply)

If REX-USB61 supply power(3.3V/5.0V) to a target device, please use utility
software or application which uses an API library.
(The library is called usb61_power_control(). Refer to (4-4) at Chapter 4.)

REX-USB61 output Be sure to connect the A target device doesn’t
power supply power terminal. supply power.
Power \/
et ! Power
I
I
SDA !
| SCcL T [lScL | ATMEL Address
® L L 50h
L——-— AT24C02B
GND e }/
Power
REX-USB61 L
SDA
SCL | ATMEL: Addr}iass
51
AT24C02B

3

*1 The pull-up resistance on REX-USB61 1s 10KQ.

If necessary, add pull-up resistance.

1.Introduction Page.1-12

I2C connection [IMHz-SCL / IMHz-SDA]
(If a target device has power supply)
If a target device has power supply, please disable power supply by utility

software or application which uses an API library.
(The library is called usb61_power_control(). Refer to (4-4) at Chapter 4.)

Disable output of power Be sure to connect the A target device

supply of REX-USB61. power terminal. supply power.

N

vV TPower Power
RS ¢
%% 1MHz-SDA SDA
| 1MHZSCL * ScL | ATMEL: Address
* AT24C02B 50h
GND |—e i
Power
REX-USB61 %
SDA
SCL ATMEL: Addr}iass
51
AT24C02B

3

* Only after providing power to all devices, set on pull-up resistance.

* If a target device provide power, don’t attach pull-up resistance on I2C bus.

1.Introduction

12C connection [IMHz-SCL / IMHz-SDA]
(If a target device doesn’t have power supply)

Page.1-13

If REX-USB61 supply power(5.0V) to a target device, please use utility

software or application which uses an API library.

(The library is called usb61_power_control(). Refer to (4-4) at Chapter 4.)

REX-USB61 output

power supply

Be sure to connect the

power terminal.

A target
supply power.

device

ij

A\ Power I Power
. :
1 1
% 1MHz-SDA . : | SDA
, IMHzSCL . ! L: SCL | ATMEL:
S A AT24C02B
GND e }/
Power
REX-USB61 $
SDA
scL | ATMEL:
AT24C02B

3

Address
50h

Address
51h

* Only after providing power to all devices, set on pull-up resistance.

*1 The pull-up resistance on REX-USB61 1s 10KQ.

If necessary, add pull-up resistance.

2.Setting up on Windows

Page.2-1

2 Setting up on Windows

(2-1) Set up on Windows 10/8.1/7/Vista x64

Turn on the PC and proceed to the below installation before connecting

REX-USB61 to the USB port.

Please download driver installer from our homepage.

https://www.ratocsystems.com/english/download

Start USB61_Setup.exe

If user account window appear,
click [Yes].

RATOC REX-USB61 Installer
will start. Click [Next].

Click [Install].

F ™
'@J User Account Control M

") Do you want to allow the following program to make

</ changes to this computer?

Program name: RATOC REX-USBG] Installer
Verified publisher: RATOC Systems, Inc.
File origin: Hard drive on this computer

(3) Show details I v [n]

Change when these notifications appear

F bl
RATOC REX-USB61 Installer - InstallShield Wizard ﬁ

‘Welcome to the InstallShield Wizard for RATOC
REX-USBE1 Installer

The InstallShigld “Wizard will install BATOC REX-USBET
Installer an your cormputer. Ta continue, click Mest.

- .
RATOC REX-USBS1 Installer - InstallShield Wizard [

Ready to Install the Program

The wizard is ready to begin installation.

Click Install ta begin the installation.
I you want ta review or change any of your installation settings. click Back. Click Cancel to exit
the wizard.
InstallS hield
< Back I Install I Cancel

2.Setting up on Windows Page.2-2

Click [Installl on the Windows (-] Windows Security oz

. . H H H H 27
Securlty WlndOW. Would you like to install this device software?

Name: RATOC
Publisher RATOC Systems, Inc.

] Ahways trust software from "RATOC Systems, Inc.". I[Install I [Don't Install]

@' You should only install driver software from publishers you trust. How can [decide
which device software is safe to install?

The set up has finished. [RATOC REX-USES1 Installer - InstallShield Wizard

InstallShield Wizard Complete

The InstalShield \Wizard has successfully installed RATOC
REX-USBET Installer. Click Finish to exit the wizard

If REX-USB61 is connected to
the PC, the installation will
automatically finish.

< Back l Cancel

Proceed to (2-4) Confirmation of setting REX-USB61 to confirm the

installation has finished properly.

2.Setting up on Windows Page.2-3

(2-2) Setting up on Windows Vista x32
Turn on the PC and connect REX-USB61 to the USB port.

The below hardware wizard will start up. Proceed to the below instruction.

Select [Locate and install driver Windows needs to install driver software for your RATOC

software (recommended)]. USB-SPI/I2C Cnv. USB Device

@ Locate and install driver software (recommended)

Windows will guide you through the precess of installing driver software
for your device.

2 Ask me again later
Windows will ask again the next time you plug in your device or log on.

i Don'‘t show this message again for this device
Your device will not function until you install driver software.

If user account window appear,
click [Yes].

C]_ick [Don’t Search Onllne] , Allow Windows to search cinline for driver software far your RATOC
USB-SPI/I2C Cnv. USB Device?

as shown right.
2 Yes, always search online (recommended)

Windows will autamatically search for the latest drivers and applications for your hardware and
download them to your computer.

% Yes, search online this time only
Windows will search for the latest drivers and applications for this device and download them to
your computer.

% Don't search online
Your device may not function praperly until you get the latest software.

Please read Microsoft's privacy statement

2.Setting up on Windows Page.2-4

Click [I don’t have the disc.

Show me other options.] and

Insert the disc that came with your RATOC USB-SPI/I2C Cnv. USB Device

select the download driver for
Windows Vista x32.

If you have the disc that came with your device, insert it now. Windows will automatically
search the disc for driver software.

*# Idon't have the disc. Show me other options.

Gt

Select [Instau this driver Q‘ Windows can't verify the publisher of this driver software

software anywayl.

< Don't install this driver software
You should check your manufacturer's website for updated driver software

for your device.

< Install this driver software anyway

Only install driver software obtained from your manufacturer's website or ;
disc. Unsigned seftware frem other sources may harm your computer or stegd |
information. !

(w) Seedetails

The software for this device has been successfully installed

The installation of REX-USB61
has finished.

Windows has finished installing the driver software for this device:

"z RATOC REX-USB61

=]

Proceed to (2-4) Confirmation of setting REX-USB61 to confirm the
installation has finished properly.

2.Setting up on Windows Page.2-5

(2-3) Setting up on Windows XP x32/XP x64
Turn on the PC and connect REX-USB61 to the USB port.

The below hardware wizard will start up. Proceed to the below instruction.

Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard

Select [No, not this time] and
click [Next].

Windows will zearch for curent and updated software by
looking on your computer, on the hardware installation CO, or on
the ‘Windaws Update “'eb site [with pour permission).

Fiead our privacy policy

Can ‘Windows connect to Windows Update to zearch for
software?

" Wee, this time only
e, now and gveny time | cornect a device
I(" Mo, not this lime: I

Click Nest to continug.

< Back: l Mext > I Cancel

Click [Install from a list or
specific location (Advanced)]
and select the download driver

for Windows XP.

Thiz wizard helpz vou inztall software for:

RATOC REX-USBET

') If your hardware came with an inztallation CD
i or floppy disk. insert it now.

“w'hat do you want the wizard to do?
~ {nstall the software autornatically [Fecommendsd
" Install from a list or specific location [Advanced]
Click Mext to continue,

< Back l Mext > I Cancel |

Found New Hardware Wizard

Completing the Found New
Hardware Wizard

The installation of REX-USB61
has finished.

The wizard has finished installing the software for:

o

RATOC REX-USEET

Click Finish to cloge the wizard.

< Back

Carize] |

Proceed to (2-4) Confirmation of setting REX- USB61 to confirm the
installation has finished properly.

2.Setting up on Windows Page.2-6

(2-4) Confirmation of setting REX- USB61
Open [Device Manager].

(3¢ On Windows XP x32/XP x64, open [Control Panel] and [System].
And select the [Hardware] tab and click the [Device manager] button.)

Confirm there is a string of [RATOC REX-USB61] properly under the
[SP1/12C Converter Device].

File Action Yiew Help

@m0 Hm el RS

I EI-;& RATOC-55TEST
::]'"L:"C-" Computer

[y Disk drives

B Display adapters

-ty DVD/CD-ROM drives

- Floppy disk drives

-3--,:;, Floppy drive controllers

j&ﬁ Human Interface Devices

+-ig [DE ATASATAPI controllers

+-Z2 Keyboards

-3---ﬂ Mice and other pointing devices

+- B Monitors

+-E¥ Network adapters

-5 Ports (COM & LPT)

]E Processors

48 Sound, video and game controllers

—- @ SPIIZC Converter Device
"

orage controllers

4‘- Systemn devices

B] 3 L
h Universal Serial Bus controllers

2.Setting up on Windows Page.2-7

(2-5) Uninstallation on Windows 10/8.1/7/Vista x64

Start [Programs and Functions].

Select [RATOC REX-USB61
Installer] and click [Uninstalll.

Ko \.) @ [l < All Control Panel ltems b Programs and Features + |43 | Search Programs and Features 2

Control Panel Home]
Uninstall or change a program

View installed updates To uninstall a program, select it from the list and then click Uninstall, Change, or

@) Turn Windows features on or Repair.
off L
Qrganize v Change =y @ f
Name Publisher =
87 Microsoft Visual C++ 2005 Redistributable Microsoft Corporation
[MROB_Setup RATQC Systems, Inc. =
o
s |RATOC REX-USEGL Installer RATOC | [
ETo0 Device brver Tony Corporation
_ Validity Sensors DDK Validity Sensors, Inc. .
q|F i] v
| F J| RATOC Product version: 100.0000
Help link: http://www.ratocsystems.com
Il

7 ~ = B
RATOC REX-USB61 Installer - InstallShield Wizard I&J

Click [Yes].

Do you want to completely remove the selected application and all of its features?

RATOC REX-USB61 Installer - InstallShield Wizard

Uninstall Complete

The uninstallation of
REX-USB61 has finished.

InstallShield \Wizard has finished uninstaling RATOC
RE<-USBET Installer.

< Back Canicel

2.Setting up on Windows Page.2-8

(2-6) Uninstallation on Windows Vista x32/XP x32/XP x64
To uninstall REX-USB61, you have to delete the driver and INF file.
(On Windows Vista, you have to delete the driver only.)

* Delete the driver

Open [Device Manager]. =
(3¢ On Windows XPx32/XPx64, Eil Pr————

open [Control Panel] and | H| 6| [%
[Systeml].

| =8 RATOC-SSTEST

And select the [Hardware] tab 548 Computer

. . - Disk drives
and click the [Device manager])

B Display adapters
button.)

é‘y’ DVD/CO-ROM drives
- Floppy disk drives

~F

"1:& Floppy drive controllers
Eﬁ Human Interface Devices
g IDE ATA/ATAPT controllers
-ZZ Keyboards

-]

Right-click the [RATOC
REX-USB61] and select
[Uninstalll.

Ej Mice and other pointing devices
‘;1 Monitors

-&¥ Network adapters

Y5 Ports (COM & LPT)

m Processors

& Sound, video and game controllers
SPIYLIC Converter Device

"W RATOC REX-USB61

1€ >torage controllers

-kl System devices

H ul ‘ y
b Universal Serial Bus controllers

On Windows Vista x32, put the “Canfirm Device Uninstal
check mark, as shown right

RATOC REX-USBR1
and click [OK]. Cd

Waming: You are about to uninstall this device from your system.

(7] Delste the driver softwars for this devics |

2.Setting up on Windows Page.2-9

* Delete INF file

(Windows XPx32/XPx64)

Start [USB61_uninst.exe]

(Available from our website)

When the dialog shown right
appear, click [OK].

Uninstall USBEL.

When the dialog shown right

appear, click [OK]. ROX-USBSL - TnalShiela X

LUSB&1 is not installed,

The uninstallation of REX-USB61 has finished.

3.SPI/T2C Control Utility

3. SPL/12C Control Utility

(3-1) Functions of the utility
Please download the the utility from our homepage.
https://www.ratocsystems.com/english/download

Usb61Uty.exe can control a target device with SPI or I12C interface

and has the following functions:

Switch operation modes for SPI and I12C
Control SPI device(Master operation)
Control I2C device(Master/Slave operation)
Control PORT pin

Read/Write setting values

Save setting files(BIN file format)

Load setting files

Save log files(CSV file format)

Table 3-1 Utility Functions

Functions

Common
1tems

Supply power to a target device

Set an time interval between data

Save transfer log files

Switch operation modes for SPI and 12C

SPI bus

Set clock polarity

Set clock phase

Set precedent bit

Set frequency

Set slave select pin(Max.4)

Master Create transfer data

Edit transfer data

Send step-by-step transfer data

Send batch transfer data

Repeatedly send transfer data

Save transfer data file

Read transfer data saved in a file

12C bus

Set frequency

Create transfer data

Edit transfer data

Send step-by-step transfer data

Master Send batch transfer data

Repeatedly send transfer data

Save transfer data file

Read transfer data saved in a file

Issue bus reset

Output PORT pin

Set frequency

Slave | Set response data to a master

Set slave address

Page.3-1

3.SPI/T2C Control Utility Page.3-2

(3-2) Explanation of the utility

The below explains screens of the utility and each function.

SPI/I2C Device rol Utility LISBG1.

i SPL2C Device Control Utility for Rl
File(E} Edit(E) Device(D) Option(Q) Help(H)

File(F) Edit(E) Device(D) Option(Q) Help(H)

DSLHE +9 -8 DSHE +9-ga8
SPI Option SPI Option
Slave Select Sampling Timing Palarity Phase Bit order B

@550 @S5 @55 @553 @ Positive @ Sample &SSO (7881 559 583 @ Fositive @ Sampla @ MSEB

O Memative () Setup Negative Setup LSE
GPO Option GPO Option
Partd Partl Portd
High High High
@) Low @ Low Set Low Set

Master [Slave
Transfer List Frequency KHz Transfer List Frequency KHz

blum Line Data, Size Hum Addr Dir Data Stop

oont MOST 00 01 02 02 04 05 06 07 04 0B 0C 0D 0E OF 15 aoo1 50 Write 00 01 02 03 04 05 06 07 08 09 DA OB OC OD ... ‘Yes

onoz MOST 00 01 02 03 04 05 06 07 04 0B OC 0D 0E OF 16 nonz 50 Read Yes

oon3 MOST 00 01 02 03 04 05 06 07 04 0B OC 0D OE OF 16 noo3 50 Write 00 01 02 03 04 05 06 07 08 09 DA OB OC OD ... ‘Yes

oon4 MOST 00 01 02 03 04 05 0E 07 04 0B 0OC 0D OE OF 18 non4 60 Read Yes

0n0s MOSI 00 01 02 03 04 05 0§ 07 04 OB OC 0D OE OF 0005 50 Write 00 01 02 03 04 05 06 07 06 09 0A OB OC OD ... ‘Yes
04 05 08 0 04 0B 0C 0D OE OF

= — } =
([(Serdstep | [Send Al [Gontinue | SPL Made SendStep | [Send Al | [Gontinue | [Bus Reset | | 20 Mode
Transfer Log Transfer Log
time mode dir mfs freq addr size data time mode dir mfs freq addr size data =
15159277 spi Set SP1 Bus Frequency - 100KH: it dacta e LG Rullp Encbled =
IBIEI27E6 spi mosi mes. 100 -— 16 D001 D203 04050607 . 15823040 Jargel Ftiner Enabid 50V |
151699786 spi miso mas. 100 -— 16 FF FF FF FF FF FF FF FF 18:3229.485 Set Interval : 100 usec

13:34:35471 ilc write mas.. 100 &0 18 00 01 02 03 04 05 06 07 o7

Culput Vall. = Disabled [Freq. - 100 KMz [Pullup = Enabled Output Vot~ B0V Freq - 100Kk [Pullup - Enabled

Fig 3-1. SPI master mode Fig 3-2. I2C master mode

File(F) Edit{f) Device(D) Option(Q) Help(H)
IsER +9$-~v28
SPI Option
& Sampling Ti Fhasa Ei e
& @ Positive (@ Sample @ M5B
S e R s Hegative 1*) Setup L5B
GPO Option
Partd Fortl Port2 Part3
() High) Hieh 1 High) High
3 Low @ Low © Low @ Low Set
Master | Slave
Responze Data Slave Address
00 01 02 02 04 05 06 07 02 09 DA 0B OC 0D 0E OF - oy
Master Glock
(@ Standard or Fast Made (Up to 400KHz)
~ ([0 High-Speed Mode (Over 400KHz)
e
| 120 Mode
Transter Log
time mode dir mfe freq addr gize data
183737881 2c slave Slave mode Enabled
183737897 2c Set 12C Bus Frequency : 100KHz
183747647 ik slave Slave mode Disabled
Cutput Walt ~ Dissbled [Freq - 100 KMz [Pullup - Enabled

Fig 3-3. I12C slave mode

3.SPI/I2C Control Utility Page.3-3

Menu bar
File(F)
* Create : Create a new setting file
* Open : Open a setting file
+ Overwrite : Overwrite a current setting
- Save a file ! Save a current setting as a new name
- End : End application

* All functions except [End] can work on master mode only.

Add : Add a new transfer data to the end of transfer list

Insert ! Insert a new transfer data into the transfer data
number selected now

Delete * Delete a selected transfer list

Erase : Erase a content of the selected transfer list
Copy : Copy a content of the selected transfer list
Paste : Paste a copied content of the transfer list onto a

selected number
* All functions can work on master only.

Devices(D)
Switch SPI/12C : Switch modes between the SPI and I12C bus

| Options(0) |
Setting : Switch pull-up conditions of the I2C bus signal
Set whether to supply power to devices
Set a voltage of power supply(3.3V, 5.0V)
Set a time interval for each 1 byte
View list/Switch scripts ' View list and switch scripts

Version information : Display version of this application
Tool bar
DSame as [Create] of [Files] at the menu bar I1-@'Same as [Insert] of [Edit] at the menu bar
ﬁSame as [Open] of [Files] at the menu bar = Same as [Delete] of [Edit] at the menu bar
HSame as [Overwrite] of [Files] at the menu bar £ Same as [Erasel of [Edit] at the menu bar
lSwitch modes between SPI and I12C mode %Same as [Copy] of [Edit] at the menu bar
[

o7 Same as [Add] of [Edit] at the menu bar %Same as [Paste] of [Edit] at the menu bar

3.SPI/I2C Control Utility Page.3-5
Controls
SPI Option
SPI Option : Set SPI mode
Slave Select : Select slave select pin
Sampling Timing : Set when to sample by which part of a clock
Polarity : Select positive polarity or negative polarity
Phase : Select phase. Select sampling or setup.
Bit order : Select which bit is transmitted first, MSB or LSB.

* Setting of Sampling Timing, Polarity, Phase operate with each other.

Response Data
Clear

Enable

Master Clock

GPO Option
Port0~3 : Set each PORT(Output only)
High, Low : Set/Display a value at each port
Set : Output to each Port
Master
Transfer List : Display the content of setting transfer
@O Num : Number of transfer data
@ Addr : Device address
@ Dir : Direction of transfer. Display Read or Write
@ Line : Display data line name. Display MOSI or MISO
® Data : Display data content
©® Stop : Display whether to stop condition is issued.
@ Size : Data size
Send : Transfer selected data
Send All : Transfer all of setting items at the list view
Continue : Repeatedly transfer setting items at the list view
Bus Reset : Issue a bus reset of the I12C bus
Slave
Slave Address : Set slave address

N.B.) Refer to Page.4-16 for how to appoint an address

: Set data to be returned to a master
: Delete returned data

: Enable slave operation
: [Standard or Fast Mode (Up to 400KHz)]

Sampling frequency(Up to 400KHz)
[High-Speed Mode (Over 400KHz)]
Sampling frequency(Over 400KHz)

3.SPI/T2C Control Utility

Master/Slave common

Log

Sampling rate

Device Mode
Output Volt

Freq
Pull-up

Transfer Log
D time

®@ mode

@ dir

@ m/s

® freq

® addr

@ size

data

Clear
Save Log

Page.3-5

: Set/display a sampling rate(frequency).

You can set a sampling rate(frequency) by 1KHz each.
For SPI, a sampling rate(frequency) will be set at an
approximate value which can be really set.
(I2C:47KHz - 1MHz / SPI: Up to 12MHz)
* For how to calculate an approximate value,
please refer to a usb61_spi_set_freq() function at
Chapter 4.

| SPII2C Bus Clock FreEuenE -ﬂ]

Set the clock frequency.
|2C Range ; 47 to 1000 kKHz
5Pl Range : 1 to 12000 KHz

Clack Frequency 100 =1 KHz

Cancel

[Setting sample rate]

: Display a current operating mode

(SPI Mode or 12C Mode)

: Display a current output at the lower left.

: Display a current sampling frequency at the lower left.
: Display a current I12C bus pull-up conditions.

: Display a log of the content of transfer

: Display time when a log is added(hh:mm:ss:msec)

: Display transfer mode for SPI/I2C(SP1/12C)

: Display transfer direction(read/write, miso/mosi)

: Display master/slave mode(master/slave)

: Display operating frequency(in KHz)

: Display I2C slave address (in Hex number)

: Display a length of data transfer(in Decimal number)
: Display transfer data(Data after 8 bytes will be

omitted)

: Delete the content of transfer log
: Save a log file(in CSV file format)

3.SPI/I2C Control Utility Page.3-6

Edit window for transfer data
If you double-click a row at the transfer list, the below edit window will be shown.

'yIransfe_r Data Editor . _ 'yTrang.fe_r Data Editor

'L Settings —[2C Settings

Slave Addiess l oo H I 10k Slave Address l 20 H [10bit
[Ciirechaor iWrite - i Cirection I'W'rite x i
Stop Condition iStu:up ‘r! Stop Condition ISt':'F' 'j

— Tranzfer Data Settings — Tranzfer Data Settings
% Binary ™ File

00 11 22 33 44 5% B6 77 9% 93 &4 BE CC .
LD EE FF

Transfer Length I Transfer Length I 16
QK. I Cancel I QK I Cancel I

Fig3-4. SP mode | Fig3-5. 12C mode

12C setting : Set transfer setting for the I12C bus
@ Slave address : Set a device address in Hex number
N.B.) Refer to Page.4-16 for how to set an slave address.
@ 10bit : Put a check mark when you set 10 bit address
N.B.) Refer to Page.4-16 for how to set an slave address.
@ Transfer direction : Set transfer direction. Set it as Read or Write.
@ Stop condition : Set whether to issue stop condition.
Transfer data setting - Display a content of transfer data or file name

(in Hex number).

(D Set as a binary : At the edit box, input data which is directly sent
@ Set from a file : Set data from a binary file
@ Select a file : Select a binary file
@ Length of data transfer : Data size (in Decimal number)
(Max 65535 bytes)

3.SPI/I2C Control Utility Page.3-7

Option setting

You can set the following by selecting [Option(O)] —[Setting].
Set pull-up setting on the 12C bus
Set to supply power to a target device
Set an interval between data

- z B

£ Disatte 2 Crart

— Power zupply to Target Device

(™ Disable

Yaoltage of Target
Fleaze don't power supply inthe caze of outzide power

— Interval Setting

During SPIAZC data transmizzion, set the time interval of
each bute.

Thiz zetting includes proceszing time with a thing
guaranteeing distance zet to a minimum in real lime and

0 uzec

Fig3-6. Option setting window

+ Disable/enable pull-up : Select whether to set pull-up on the 12C
bus line.
(I2C at 5V, 1MHz pin [401KHz - 1000KHz] only can be selected.)
Whether to supply power or not : Select whether to supply power to a
target device. Select from 3.3V or 5.0V.
N.B. : Don’t supply power while an external power supply provide power

Set an interval : Set a time interval for 1 byte each
when sending data.

3.SPI/I2C Control Utility

(3-3)

Page.3-8

Example to control by using this utility

* The below explanation is an example used ATMEL:AT24C02B, AT25080A

« SPI master mode
[Switch SPI/I2C]
By switching SPI/I2C, SPI Mode can
be selected.

[Set a sampling rate(frequency)]
Set a sampling rate(frequency) at the

Frequency section.

You can set a sampling
rate(frequency) by 1KHz each. For
SPI, a sampling rate(frequency) will
be set at an approximate value which
can be really set.

(I2C:47KHz - 1MHz / SPI: Up to
12MHz)

For how to calculate an approximate
value, please refer to a
usb61_spi_set_freq() function at
Chapter 4.

[Set to supply power]
Supply power by selecting [Option]-
[Setting].

[Set an intervall
Set a time interval by 1 byte each for
sending data.

D || | 6
—5PI Option -
Slave Select Sampling Timing Palarity Phase Bit order
& ~ -~ * Pozitive * Sample = M5B
=l 25l S e @ " Megative (" Setup " LSB
£ High Higt Hieh £ High
Master 1]
Transfer List ‘ Frequency |100 fod ’KHZ
Hum 1 Line I Data ! Size]
Send Step] Send All] Cantinue I SPI Mode

~Transfer Log

time | mode [dir [mds [ireq |addr | sice |data |

Clear Save Los

Dutput Volt. - Disabled [Freq. - 100 KHz [Pullup = Enabled
. A S e i e

Fig3-7. Default setting of utility
 Optional Settings

" Disable
Waolkage of Target
=%E of outzide power

— Interval Setting

Diuring SPIAZC data bransmigzion, zet the time interval of
each byte.

Thiz setting includes processing time with a thing

guaranteeini distance set to a minimum in real time and

Ok

Fig3—-8. Setting to supply power

3.SPI/I2C Control Utility

Page

.39

Example : Write 11 22 33 44 55 66 77 88 at 50h, and write 8bytes data from 50h.

[Data input(Write / Read)]
Double-click an inside of [Transfer
List] and input a Hex number.

Please see the below example.

(1 row)

06h --- Set Write Enable bit

(2 row)

02h --- Write command

00h 50h --- Address where data 1is
written

11h 22h.. --- Data to be written (8byte)
(3 row)

03h --- Read command

00h 50h --- Address to be read
00h O00h --- Dummy data
Read(8byte)

(8byte data will be read)

for

[Execution(Write / Read)]

By clicking the [Send All] button, the
data inside of the [Transfer List] will
be sent.

The sent/received data will be
displayed at the [Transfer Log].

CH SPULIC Device Contral Uty for REX USEEL]
File(F) Edit(E) Device(D) Option(Q) Help(H)

0| b | 6| || = |7 || mm)

@ ss0 st csso cosss (SRR & Postie

-SPI Option
Slave Select Sampline Timing Palarity Phase Eit arder
* Sample MSE
" Megative (7 Setup LB

& High £ Hiet £ Higt ~H
& Loy oL " L * L =
Master] e |
Transfer Li Frequency 100 vl KHe
Pl [Line [Data NG [8ize |
0001 HOSI 1L 1
| 0oz WOEI 02 00 B0 11 22 33 44 65 66 77 88 11
nooz MOST 03 00 &0 00 00 00 00 00 00 00 00, 1
Send Step] Send Al J Continug ‘ | SH Mode
Transter Log
time [mode [dir [mfs [freq [add [size [data |
203002001 i2c 25 Pullup Enabled
203002m7 Target Power Enabled : G0V
20:3003033 Set Interval : 0 usec
Save Log

Dutput Wolt. - 50 [Freq. - 100 KHz [Pullup - Enabled

Fig3-9. data input

g SPLIC Device Control Utility for REX-USEGL
File(F) Edit(E) Device(D) Option(Q) Help(H)

D@ || =9 = |7 [=]e|

-SPI Option
Slave Select Sampling Timing Palarity Phase Eit order
(¢ Fositive (* Sample (* M3B
¢ 550 {851 {552 (553
@ ™ Negative " Setup LsB
C Hi C Hiet P cH
& Lov = Lo L & | Bt
Master] e |
Transter List Frequency (100 > KHe
[[Line [Data [size |
oot HOSI 06 1
ooz HOSI 02 00 50 11 22 33 44 55 66 77 68 11
oonz MOST 03 00 &0 00 00 00 00 00 00 00 00 1"
Send Step gAY Continue ‘ SH Mode

Trans=fer Log

time _Lowse=t AT | m/s | freq | addr | size | 0808 —
pi]B?ﬁg 99 spi miso maz. 100 i 1 FF
059115 spi mosi mas. 1000 -— 11 020050 11 9433 44 55 ..
<’203059.115 =pi misa mas. 100 -— 11 FF FF FF FF FF FF FF FF .
0:3050130 epi mosi mas. 100 -— 11 03 00 500000000000 ..
0146 =pi migo masz.. 100 B 1 FF FF FF 11 22 33 44 &

Save Log

4 [z

Dutput “alt. - BOV [Freq. - 100 KHz [Pullup = Enabled

Fig3-10. Execution

3.SPI/I2C Control Utility Page.3-10

« I2C master mode

[SWlt Ch SPI /I 2 C] ¥ SPI12C Device Contral Utility for REX-USB61
N F\‘E.(B .Edit@ Device(D) Option@ Help(H)
[Set a sampling rate(frequency)] D || | o[~ |7 ||
[Set to supply power] S#1 oot — — —
[Set an intervall e s e s e s € pusie @
Like the procedure described at 3P0 Cption
. . Portll Partl Port2 Part3
Page.3-8,SW1tch modes into I2C Mode Lo sl L L -
and set a sampling rate(frequency) / =
power supply / interval. (Master tab — ‘/\u — -~
ranzfer Lis requency = iz
should be selected) = T T T5n _—
*1 Slave address
(R/W bit is not included)
[Example : In case of 50h] —
Send Step] Send All I Continue | Bus Reset] 120 Mode
: _____ : : : : : : ~Transfer Log
T—Q——I 1 i 0 i 1 0 i 0 ; O ; O R/W | time [mode [dir [m/s [freq [addr [size [data |
W3R02167 1% I2C Pullup Enabled
03302183 Tareet Power Enabled : 5OV
“ _ 20:3202199 Set Ihterval : 0 uzec
Slave addreSS Save Log
[Cutput Vaolt. - 50V [Freq. - 100 KHz [Pullup = Enabled

Fig3-11. initial setting of utility

Example : Write 11 22 33 44 at the address of 00h for a device of slave address 50h,
and write 4byte data from the address of 00h for the device of address 50h.

[Data input(Write / Read)]
Double-click an inside of [Transfer

Trasf__er Data Ed[tr

List] St
and set each item. Slave Address 50 H [T 10bit
- slave address --- Set 7bit M m

*1 For setting, refer to [Slave address],
as described above.

Stop Condition | Stop '1

- Transfer D ata Settings

(If you set data as 10bit, put a check & Binen “ Fie

mark at the [10bit]) RS TET]

* Transfer direction --- Select Write /

Read

* Stop condition --- Set an issue of stop
condition

« Transfer data --- Set data in Hex

number Tranzfer Length I—E‘

* Length of data transfer --- When
writing, the length of data transfer
will be displayed automatically and |
when reading, set data size which Fig3-12. Edit transfer data
will be read.(Unit:Byte)

3.SPI/I2C Control Utility

Please see the below sample.
(1 row) <Write>
- Slave address --- 50 h (Set as 7bit)
+ Data direction --- Write
+ Stop condition ---Yes
+ Transfer data
00h --- Address to be written
11h 22h.. --- Data to be written
(2 row) <Write for Read>
- Slave address --- 50 h (Set as 7bit)
+ Data direction --- Write
+ Stop condition --- No
+ Transfer data
OOh --- Address to be read
(3 row) <Read>
« Slave address --- 50 h (Set as 7bit)
+ Data direction --- Read
+ Stop condition --- Yes
+ Length of data transfer --- 4
(This won’t display)

[Execution(Write / Read)]

By clicking the [Send All] button,
data inside of the [Transfer List] will
be sent.

The sent/received data will be
displayed at the [Transfer Log].

Page.3-11

L SPL1IC Device Control Utility for REX-USB61

File(F} Edit() Device(D) Option(Q) Help(H)
0| |] 20| = | |s[e
& 1 el s
~GPO Option —
Fort Fortl Fart2 Fortd
= High " Hieh " High " Hiegh
& Low & Low @ Low @ Low Set
Master]SIave]
Transfer L Frequency wl KHz
I [addr [Dir [Data [stoe N
0001 50 Write 00 11 22 33 44 Yes
e i WETER™ il il
ang &0 Read Yes
Send Step I Send All] Gontinue] Bus Reset] 120 Mode
Transfer Log
time [mode [dir [mis [treqg [add [size [data |
20:3302167 % 12G Pullup Enabled
20:3302183 Target Power Enabled : 50V
20:3302199 Set Interval : 0 usec
Clear Save Log
Output Volt. - 50V [Freq. - 100 KHz [Pullup = Enabled

Fig3-13. Data input

¥ SPL12C Device Control Utility for RE

File(F} Edit(E) Device(D) Option{Q) Help(H)

D_]é'lwilil 0[] = [R

e O

£z ¢
1
GPO Option
Portl Portl Port2 Fort3
£ High " High " High " High
& Low # Low & Low & Low et
Master 15\5\,8 |
Trangter List Frequency |100 | KHz
Wum [Addr [Dir [Data |ston |
oo a0 Write oo 11 22 33 M4 Yes
nonz a0 Write oo Ho
noo3 a0 Read Yes
Send Step ER = T Continue Buz Reset 20 Mode

Transter Log

6 494
203739089 2o
W0:AT29114 i
20:3739130 i2c

30145 o

Output Valt. - B0V

3

Set Interval : 0 usec
Set I2C Bus Frequency : 100KHzZ

write mag. 100 50] 0011 22 33 44 E;
write masz.. 100 a0 1 oo L4
read mag. 100 50 4 0A 2F 2F 2F -

Save Log I

Clear

[Freq. - 100 KHz [Pullup = Enabled

Fig3—14. Execution

3.SPI/I2C Control Utility Page.3-12

« I2C slave mode

[Switch SPI/I2C] ot/ MG SO
- File® Edit) Device(D) Help(H)
[Set a sampling rate(frequency)] S EIT e Bty
[Set to supply power] S Optien— -
[Set an intervall e - e
i T @
~GPO Option
. . PortD Portl Port2 Paortd
Like the procedure described at High Cha C o
. . @ Low * Low + Low + Low 2
Page.3-8,switch modes into I12C Mode —
and set a sampling rate(frequency) /
power supply/interval. (Master tab esponse Beis Sl fddress
50
should be selected)
Master
ol
el L=
Set a slave address as 7bit at the [Slave Transfer Log
. itme mode | dir mis | fred addr | size | data
Address] and Cth the [Enable] button. QtD4345ﬁ361i2c I : L | J 11*20‘ Pullup Enabled l
204345652 Tareet Pomer Enabled - 50V
20:43:45 652 Set Interval : 10 usec
W4IE2EI i slave Slave mode Enabled
204352863 i Set [2C Bug Frequency @ 100KHz
. Clear Save Log
When data 1s sent from a master,
Read data will be displayed at the Oupat Vel ~50V Freq ~T00KFz — Pullp = Ensbled

R Dat d [Transfer log].
[Response Datal and [Transfer log] Fig3-15. I12C slave mode setting

3.SPI/I2C Control Utility Page.3-13

(3-4) Grammar for script description
This utility can treat a script file where a description of a device access is written.
You can describe a comment at the script file. By using the script file, you can access
a device. You need to describe a script by the following rule:

¢ Common command for SPI/I2C

The following is a common command for both SPI and 12C.

Definition of values
Describe values as Decimal number or Hex number.
The values ranges from 0~65536 and if the values is Hex number, put [h] or [H]
at the end of the values. If you describe the values consecutively, put [,] between
a value and another value.
Definition of characters
This script file doesn’t distinguish a small letter and a large letter of alphabet.
You may write Japanese comments.

* Grammar
Be sure to put space(one-byte) or TAB between a command and another
command, or a value and another value.
Two-byte characters are a grammatical error.

Fig.3-2 Common command table

Command | #

Meaning | The sentence after [#] is treated as a comment.

Parameter | None

Command | MODE=

Meaning | Set mode for SPI, or I12C.

There is not a default value for this MODE command.
If you don’t set a mode, it is a grammatical error.
After setting, you can not change modes halfway.

Parameter | SPI
I12C

Command | FREQUENCY=

Meaning | Set a sampling rate(frequency).

You can set a sampling rate(frequency) by 1KHz each.

For SPI, a sampling rate(frequency) will be set at an approximate value which

can be really set. (I2C:47KHz - 1MHz / SPI: Up to 12MHz)

* For how to calculate an approximate value, please refer to a
ush61_spi_set_freq() function at Chapter 4.

If you don’t set Frequency, the following is a default value.

Mode Sampling rate (Frequency)
SPI 100KHz
12C 100KHz

You can change sampling rate(frequency) any time.

Parameter | You can set the below setting for SPI,12C.
Mode Setting value
SPI 1-12000
12C 47 - 1000

3.SPI/I2C Control Utility

Page.3-14

Command | INTERVAL=

Meaning Set an interval of waiting time which is inserted into bytes of data to be
sent.(Unit: micro second)
If you don’t set this value, a default value is 0.

Parameter | Set a value ranging from 0 to 65535.(0 — 65535 micro seconds)

* An actual interval time include process time, so it will be longer than the interval set here.

Command | POWER=
Meaning | Supply power set at a parameter.
You can change power supply any time.
If you don’t set this item, a default value is Output OFF.
Parameter Output Setting value
Output OFF | OFF
Output 3.3V | ON3
Output 5.0V | ON5
Command | WAIT=
Meaning | Set a waiting time until a next command is executed.
Unit is 100 milliseconds. (100 milliseconds - 60 seconds)
Parameter | Set a value ranging from 1 to 600. (100milliseconds - 60 seconds)
Command | REPEAT=nn
Meaning | Repeat a command written in { } after REPEAT command by a number set in
this command.
If this { } is not written, only a next command written right after this command
will be repeated.
* For how to use this command, please refer to Page.3-17.
Parameter | nn=1 - 655361...}
Command | PULLUP=
Meaning | Set a pull-up setting for SDA, SCL signal line.
A default value is pull-up(ON), and as long as voltage of power
supply:5V,frequency:1MHz is set, you can set off pull-up.
Parameter | ON or OFF
Command | FILEn
Meaning | Set a file number as n, and you can set 5 files at maximum.
From a file embraced by*”’(double-quotation), data will be sent/received. Data is
treated as binary data.
To set a file, appoint a file name instead of path. Please note error happens if the
file doesn’t exist at the same directory when sending data. When receiving data,
a new file will be created.
Parameter | n=1-5
“file name”
Command | END
Meaning | Execute the script until END.

The content described after END isn’t executed.
(Reading script will stop at END command)

Parameter

None

3.SPI/I2C Control Utility

Page.3-15

¢ Command for 12C only

Fig.3-3 I2C command table

Command | ADDRESSMODE=
Meaning Set I12C address to 7 bit mode or 10 bit mode. (Default value is 7 bit mode)
Parameter | 7 or 10
Command | ADDRESS=
Meaning Set I12C address
You can change address any time, but if [READ] or [WRITE] command is
written before setting an address, it is a grammatical error.
Parameter | 0 —1023
Command | READ
Meaning Read bytes set by this command.
Parameter | xxH
Set bytes which will be read.
1- 65536
Command | READF
Meaning Read bytes set by this command and save the data as a file.
The data is saved as a file name described as FILEn.
Add the data to the existing file if a file already exist.
Parameter | xxH FILEn
Set bytes to be read. a file to be saved (Bytes:1 - 65536)
Command | WRITE
Meaning Write data set by this command. If more than one data need to be written,
separate each data by comma.
Parameter | xxH, xxH, ...
Set data to be written by bytes.
Command | WRITEF
Meaning Send data from a file. Data is treated by a binary data.
Data to be written is read from a file specified as FILEn.
Parameter | FILEn
Set a file to be written
Command | STOP
Meaning Send stop bit.
Parameter | None
Command | RESET
Meaning Issue a reset to bus(send STOP bit)
Parameter | None
Command | GPO=
Meaning Set a port output to DOO - DO3#13 - #16 pin)
Parameter | Set 1 for output bit.

Set 0 - 15 when describing in Decimal number.
Set Oh - Fh when describing in Hex number.

Bit3 Bit2 Bitl Bit0

DO3 DO2 DO1 DOO0

3.SPI/I2C Control Utility

¢ Command for SPI only

Fig.3-4 SPI command table

Command | SS=n
Meaning Set slave select pin. Default value is 0.
Parameter SSx
0 SS0
1 SS1
2 SS2
3 SS3
Parameter | n=0-3
Command | SAMPLING=n
Meaning Set bus sampling method. Default value is 0.
Parameter Sampling edge Figure
0 Rising edge f
1 Falling edge ﬂ
2 Falling edge %
3 Rising edge f
Parameter | n=0- 3
Command | FB=
Meaning Set a first bit. Default value is MSB.
Parameter | MSB or LSB
Command | SSSET
Meaning Set Low for slave select signal set by SS command.
Parameter | None
Command | SSRESET
Meaning Set High for slave select signal set by SS command.
Parameter | None

Other functions

For SPI, there isn’t any particular command for Read/Write, and write a described value. SPI

by its nature write and read at the same time, so to read only isn’t allowed.

Meaning

Read data is saved as a file set in FILEn.(If FILEn is specified)
Add data if an existing file is set.

Parameter

xxH, xxH, ... FILEn
Set data to be written by bytes, and data to be read is saved as a
File.

Meaning

Write data from a file set by FILEm.
Read Data is saved as a file set by FILEn.(If FILEn is specified)
Add data if an existing file is set.

Parameter

FILEm FILEn
Set data to be written as a file, and save data to be read as a file.

3.SPI/I2C Control Utility

€ How to use REPEAT command
This section explains REPEAT script and inside process of { } and STOP.

Page.3-17

Script code Explanation of function
gE}ZEDATZIIO STOP After receiving 10 bytes of data, STOP condition is sent.
?EPEAT:lO Repeat the following 10 times:

READ 1 STOP [Send STOP condition by 1 byte each]
}
REPEAT=10 e ..
READ 1 STOP condition is sent after receiving 10 bytes of data.
STOP
REPEAT=10
{
READ 1 STOP condition is sent after receiving 10 bytes of data.
§
STOP
REPEAT=10
{ Repeat the following 10 times:
READ 1 [STOP condition is sent after receiving 1 byte of datal
STOP

3.SPI/I2C Control Utility

(3-5) Example of script

The below is an explanation of how to use a script file.

From [Option]-> [List View/Script
Changel, show script description
mode.

The function of each button

1s as follows:

[Load] --- Read a script file.
[Save] --- Save a script file.
[Clear]--- Erase a shown content.
[Execute]---Execute a script.
[Stopl--- Stop executing script.

A result of execution shows at
[Transfer Log].

-USEel]

File(E) Edit(E) Device(D) Option(Q) HelpH)

D sl

5| | & L5=J *]

Page.3-18

FILEI
FILEZ

RED

t Sample of 120 Seript
I ATMEL: AT24C014 Serial EEPROM Input/Output
HODE=T2C I

G mode
“write.bin®
“read.bin”
INTERYAL=20
FREQUENCY=100
POMER=0MG
FULLUP=0K

ADDREZSMODE=7
ADDRESS=G0h

I From here, access to a device

Write 4 bytes data from address 0008h
0&h Write address =

00h,01h,02h,03h § write data

I STOP

WRITE
WRITE
STOP

Confirm data i= writien properly

I Read 4 bytes data from address 0008h
WRITE
1t Read 4 bytes

B

0h # Read address =

 data file to be sent
I file to save received data

Time interval between data transmizssion = 20 micro secor

Set sampling rate(frequency) at 100KHz =
i External power supply = 5Y

I SCL.SDA line pull-up

hddress mode =
Slave address =

Thit
fillh

0&h

Transfer Log

| mode {di 1

Cutput Wolt. - Disabled [Freq. - 100 KHz

16:4212663 Qe
164312669 2o

£ read
[write
write
read
2069

83 67 93 43

08 0001 0203 04 0506 ..
08

2C 2083 41

Tareet Power Dizabled

[Pullup = Enabled

Save Log

Fig3-16. Example of script

* You can make and edit a script file with a text editor because script files are text

files.

3.SPI/I2C Control Utility Page.3-19

The below describes script samples(Write/Read) to control an I12C and SPI device.
(The script files are included in the download folder. I2C_script.txt/ SPI_script.txt)

. Sample of 12C SCI‘iDt . (Write 4bytes data(00h 01h 02h 03h) from the address of 0008h of the

device at slave address 50h, and read the data to confirm the data is written properly. And also, write
data on the file, and read the data to a file to confirm the data is written. Sampling rate(frequency) is

100KHz/External power supply is 5V)

Sample of 12C script
ATMEL: AT24C01A Serial EEPROM Input/Output

MODE=I2C # 12C mode
FILE1 "write.bin" # data file to be sent
FILE2 '"read.bin" # file to save received data
INTERVAL=20 # Time interval between data transmission 20 i sec.
FREQUENCY=100 # Set sampling rate(frequency) at 100KHz.
POWER=ON5 # External power supply 5V
PULLUP=ON # SCL,SDA line pull-up
ADDRESSMODE=7 # Address mode 7 bit
ADDRESS=50h # Slave address 50h
#
From here, access to a device
#
Write 4 bytes data from address 0008h
WRITE 00h,08h # Write address 0008h
WRITE 00h,01h,02h,03h # Write data
STOP # STOP

Confirm data is written properly
Read 4 bytes data from address 0008h

WRITE 00h,08h # Read address 0008h

READ 4 # Read 4 bytes

STOP # STOP

Read data of FILE1 from address 0008h

WRITE 00h,08h # Write address 0008h

WRITEF FILE1 # Write data(4 bytes of binary data at FILE1)
STOP # STOP

Confirm data is written properly
Copy data read from address 0008h onto FILE2

WRITE 00h,08h # Read address 0008h

READF 04h FILE2 # Copy 4 bytes read data onto FILE2
STOP # STOP

POWER=0OFF # External power supply OV

END

3.SPI/I2C Control Utility Page.3-20

- Sample of SPI script : (Write 4bytes data(00h 01h 02h 03h) from the address of 1500h, and

read the data to confirm the data is written properly. And also, write data on the file, and read the data
to a file to confirm the data is written. Sampling rate(frequency) is SMHz/External power supply is 5V)

Sample of SPI script
ATMEL: AT25080 Serial EEPROM Input/Output

MODE=SPI # SPI mode
FILE1 '"write.bin" # data file to be sent
FILE2 '"read.bin" # file to save received data
POWER=0N5 # External power supply 5V
INTERVAL=20 # Time interval between data transmission 20 u sec.
FREQUENCY=3000 # Set sampling rate(frequency) at SMHz.
SAMPLING=0 # Specify an edge to renew data
FB=MSB # Set a bit order
SS=0 # Select slave select pin as 0
#
From here, access to a device
#
Write 4 bytes data from address 1500h
SSSET # Activate SS signal at the Low level
06h # Operation code WREN
SSRESET # Activate SS signal at the High level
SSSET # Activate SS signal at the Low level
02h,15h,00h # Operation code WRITE+ write address
00h,01h,02h,03h # Write data
SSRESET # Activate SS signal at the High level

Confirm data is written properly
Read 4 bytes data from address 1500h

SSSET # Activate SS signal at the Low level
03h,15h,00h # Operation code READ+ read address
REPEAT=4 # Repeat the next command 4 times
00h # Read 1 byte of dummy data
SSRESET # Activate SS signal at the High level
Write data on FILE1 from address 1500h

SSSET # Activate SS signal at the Low level
06h # Operation code WREN

SSRESET # Activate SS signal as the High level
SSSET # Activate SS signal at the Low level
02h,15h,00h # Operation code WRITE+ write address
FILE1 # Write data on FILE1

SSRESET # Activate SS signal at the High level

(Continue to the following page)

3.SPI/I2C Control Utility

Page.3-21

(Continue from the previous page)
Confirm data is written properly
Copy data read from address 1500h onto FILE2

SSSET # Activate SS signal at the Low level
03h,15h,00h # Operation code READ+ read address
FILE1 FILE2 # Write dummy data from FILE1

Save date read to FILE2
SSRESET # Activate SS signal at the High level
POWER=0OFF # External power supply 0V

END

4. API function reference Page.4-1

4 APl function reference

(4-1) Using on VC

This API functions is a library software to support software development
using REX-USB61.
By using the API functions, it will be possible to incorporate the application
program own control SPI/I2C target device.
The header file (usb61def.h) and the library file (usb61api.lib/ LIB¥VC_x64
is for 64-bit) are provided to use the library functions on VC++.
(usb61lapi.dll is copied to the system by installing a driver.)
Add these files to your project, then call the library functions.
The declaration of importing library functions is as follows (excerpt from
usb61def.h):

* For a description of user defined types, please see the header file

usb61def.h.

#define USB61LIB_API __declspec(dllimport)

USB61LIB_API HANDLE WINAPI usb61_open(RS_STATUS *pStatus);
USB61LIB_API RS_STATUS WINAPI usb61_close(HANDLE hUsb61Device);
USB61LIB_API RS_STATUS WINAPI
usb61_power_control(HANDLE hUsb61Device, UINT fPowerState);
USB61LIB_API RS_STATUS WINAPI
usb61_mode_change(HANDLE hUsb61Device, UINT fDeviceMode,
USHORT i2cSlaveAddr);
USB61LIB_API RS_STATUS WINAPI
usb61_set_interval(HANDLE hUsb61Device, USHORT IntervalCnt);
USB61LIB_API RS_STATUS WINAPI
usb61_gpo_write(HANDLE hUsb61Device, UINT fPortVal);
USB61LIB_API RS_STATUS WINAPI
usb61_get_fw_version(HANDLE hUsb61Device, UCHAR* pFWMajorVer,
UCHAR* pFWMinorVer);
USB61LIB_API RS_STATUS WINAPI
usb61_get_dll_version(HANDLE hUsb61Device, UCHAR* pDlIMajorVer,
UCHAR* pDIIMinorVer);
USB61LIB_API RS_STATUS WINAPI
usb61_get_hw_info(HANDLE hUsb61Device, RS_ HARDWARE_INFO pHardwareInfo);
USB61LIB_API RS_STATUS WINAPI
usb61_i2c_pullup(HANDLE hUsb61Device, RS_I2C_PULLUP fI2cPullup);
USB61LIB_API RS_STATUS WINAPI usb61_i2c_bus_reset(HANDLE hUsb61Device);
(Continue to the following page)

4. API function reference Page.4-2

USB61LIB_API RS_STATUS WINAPI
usb61_i2¢c_set_freq(HANDLE hUsb61Device, RS_I2C_FREQ fI2cFreq);
USB61LIB_API RS_STATUS WINAPI
usb61_i2¢c_set_freq_ex(HANDLE hUsb61Device, USHORT Frequency,
USHORT *pActualFrequency);
USB61LIB_API RS_STATUS WINAPI
usb61_i2¢_read_master(HANDLE hUsb61Device, USHORT SlaveAddress,
UINT fI2¢Option,USHORT ReadBytes, UCHAR *pReadBuf);
USB61MLIB_API RS_STATUS WINAPI
usb61_i2¢_read_master ex(HANDLE hUsb61Device,
USHORT SlaveAddress, UINT fI2¢Option,
USHORT ReadBytes, UCHAR *pReadBuf);
USB61LIB_API RS_STATUS WINAPI
usb61_i2¢c_write_master(HANDLE hUsb61Device,
USHORT SlaveAddress, UINT fI2¢Option,
USHORT WriteBytes, UCHAR *pWriteBuf);
USB61LIB_API RS_STATUS WINAPI
usb61_i2¢_read_slave(HANDLE hUsb61Device, RS_NOTIFY_TYPE nType,
void (CALLBACK EXPORT* IpfnReadEvent)
(USHORT ReadBytes, UCHAR *pReadBuf),
HWND hWnd);
USB61LIB_API RS_STATUS WINAPI
usb61_i2¢c_set_response_data(HANDLE hUsb61Device,
USHORT ResponseBytes, UCHAR *pResponseBuf);
USB61LIB_API RS_STATUS WINAPI
usb61_spi_set_freq(HANDLE hUsb61Device, UINT fDataMode,
USHORT Frequency, USHORT *pActualFrequency);
USB61LIB_API RS_STATUS WINAPI
usb61_spi_transmit_master(HANDLE hUsb61Device, RS_SPI_SS fSlaveSelect,
USHORT TransmitSize, UCHAR *pSendBuf, UCHAR *pRecvBuf);
USB61LIB_API RS_STATUS WINAPI
usb61_spi_transmit_master_hold_ss(HANDLE hUsb61Device,
RS_SPI_SS fSlaveSelect, USHORT TransmitSize,
UCHAR *pSendBuf, UCHAR *pRecvBuf);

4. API function reference Page.4-3

(4-2) Using on VB / Visual C#

To use an ActiveX component for application of Visual C# and Visual BASIC
that can be downloaded from our homepage. You need to register your
ActiveX by following method. (ActiveX is supported for only 32-bit
application.)

If you need an application for 64-bit, please refer to definition file and call
API directly from dll.

(1) Registration of ActiveX
Install the driver in Chapter 2 Windows Setup.
The DLL and ActiveX will be copied automatically.
For using the usb61api.ocx on VB, use the tool "Regsvr32.exe" that is
attached to the Visual BASIC.

The "Regsvr32.exe" is 32bit console application. Therfore you must run it

on command prompt as administrator.
When register “usb61lapi.ocx”, enter on command prompt as the follows:

> regsvr32 usb6lapi.ocx

Regsviaz x|

@ DlRegisterserver in usbélapi.ocx succeeded.

The message of registration success.

(2) Unregistration of ActiveX
When unregister it, enter on command prompt as the follows:
> regsvr32 /u usb61spi.ocx

Regswiaz x|

@ DllUnreqgisterServer in usbalapi.ocx succeeded,

The message of unregistration success.

4. API function reference Page.4-4

(3)How to reference ActiveX on VB6

Create new proj ect. 25 Project] - Microsoft Visual Basic [design] f=lfE =
FEile Edit View Project Format Debug Run Query Diagram Tools Add-Ins Window Help
B0 B E| s meda] o =], HERW2 X
x| Project - Projectl x|
General ; (=]
=] £3 Projectl - Forml (Form) = [ETE —
L3 1 ul (1] a--g Project1 (Project1)
Forml = -3 Forms
B S EER T %
Properties - Forml x|
Forml Form %
Alphabetic | categorized |
B e e e] (Mame) Form1 -

Appearance |1-3D
AutoRedraw False
BackColor [] &H80000 -

|caption
|Returns/sets the text displayed
in an object’s title bar or below

Form Layout x|
Select the component | Somponents 5
with the Project Corttrols | Designers | Insertable Objects |
menu. []PrintlJI Objects 1.0 Type Library -
. [“Irdpcomapi 1.0 Type Library
Check-in the [CIReMon 1.0 Type Library
" : : [15ystem Monitor Control =
usb61spi ActiveX e ; W Pz | oo
P Ll isb& 1api ActiveX MR Ff[f« FANF. [f< e 2
Control Module" in [1vB & Application Wizard =5 o~ =y
. ["1vE & Data Form Wizard =
the list of controls. [1vB & MsChart Wizard m
[CIvcwiz 8.0 Type Library

] n n
Click "OK" button. [vHtmlInput 1.0 Type Library

| visModelBrowser |= |

[1wishost 1.0 Type Library & - I
et L L e Ly = oo

1] L | s

I Selected Items Only

Usb&1api ActiveX fRF foflf« ffWF. [f-
Location: C:\Windows'system32\usbé 1api. oo

oK | Cancel Apply

4. API function reference

Then the usb6lapi
Active X component
is added.

Select the usb61api
Active X component
that was added, and
then paste the
project to the form.
To prevent appear
on the run-time, set
the "Visible" in the
property of the object

to false.

Double-click the
object, then appear
the subroutine "Sub
Usb61apil_OnEvnet
Msg(...)" that called
at when event

occurs.

See the description
of the "Detail of API

functions".

Eile Edit View Project Format Debug Run Query Diagram JTools Add-Ins Window Help

|B-a-BeE|s @8], @ « HFRYR2EDN

Alphabetic | categorized |
AutoRedraw |False =
o

Caption
Returns/sets the text displayed
in an object's title bar or below

I}

File Edit View Project Fermat Debug Run Query Diagram Teools Add-Ins Window Help

IB-a-BlEed|s@mas o oy o« HMESEREM

File Edit View Project Format Debug Run Query Disgram Tools Add-Ins Window Help

|s-1- 2| [t mma| o |) 0o BHEESR2E D] 2o
x|

N

N—

=15 Project] (ProjectD) |
=453 Forms
L. Form1 (Form
Properties - Usblapil x|
[usb61apit Usba1zpi -1

Alphabetic | Categorized |

IBsbﬁlnpil j I()n{wzm"sg
Private Sub Usb6lapil OnEventMsg(SyVal wParam As Long, ByVal 1Pa |
End Sub

==

4. API function reference

(4)How to reference ActiveX on VB.NET / Visual C#

Create new project.

Select the [Tool] -
[Choose Toolbox
Items...] - [COM
Components] in the
menu.

Check the
[Usb61apiControll.
Then click the "OK"
button.

Confirm the
component is
registered, then

paste to the form.

To prevent appear
on the run-time, set
the "Visible" in the
property of the object

to false.

" WindowsApplicationl - Microsoft Visual Studio ==
File Edit VWiew Project Build Debug Data Tools Window Community Help
ArEa-Sda s b Debug ~ Any CPU - o ¢
o |12 & S | W ol | 53]l B & | = -
 Solution Explorer - Wir - - Forml.cs [Design] | Start Page | ~ x |[Properties A X
B2E& = g
[Selution 'WindowsApplicationl’ Forml ===
[28 &3] WindowsApplication|
: B Misc
Properties 2
B References Project File WindowsAppli =
- [Forml.cs 2| Project Fol C:\Users\kobd
] Program.cs E Policy
Policy File
£ el i 3
Error List ~ax
@ 0Erors | 80 Warnings | (i) 0 Messages
Description File Line
Misc
Y21Call Browser| (=] Output [[38 Pending Checkins |3} Error List [8]0bject Test Bench
Ready

‘Choose Toolbox Items

| NET Framework Components | COM Components

MName
[SDProjWiz2 Class

[] SelectFile Class

[SysColorCtrl class

[Systerm Monitor Cont
[Tabular Data Control
|| TaskSymbol Class
Usb61api Control
[] VCMacroPicker Class
[VideoRenderCtl Class
[] VisModelBrowser, VM
[VISHostCH Class

Path

Library

rol

Browser

E\Program Files\Microsoft Visual Studio ...

CAWindows\system32\CompatULdll
CAWindows\system32\cic.dll
CAWindows\System32\sysmon.ocx
CAWindows\system32itdc.ocx
CAWindows\system32immendmgr.dll
CiWindows\system32\usbblapi.ocx

E\Program Files\Microsoft Visual Studio ...

qevd.dll

E\Program Files\Microsoft Visual Studic...
Ch\Windows\Microsoft. NET\Framework\...

CompatUI1.0 Typ...
cic 1.0 Type Library
System Monitor C...

ModeMgr1.0 Type..
Usb6lapi ActiveX ...

VisModelBrowser
vishost 1.0 Tvee Li...

1]

1

| 2

Ush6lapi Control

Language:
ocx i
WVersion:

Language Meutral
10

Browse...

ok ||

Cancel

Reset]

J

" WindowsApplicationl - Microsoft Visual Studio

File Edit View Project Build Debug Data Format Tools Window Cemmunity Help
A-iE-E e %G 9 - b Debug - Any CPU 5&
< o S v S 1 e B 20 - n =
Solution Explorer - Winde.. = & X || WindowsApplicationl* * Form1.cs [Design]*| ¥ x || Toolbox = X
B2 &d&E Y _ = || (=9 ImagelList “ 8
- -3 AJSBELAPILID a2 Forml (3 MessageQueue B
«3 System 4] PerfermanceCou.., —f_,
-« System.Data Q Process g

-« System.Deployme—
<3 System.Drawing

 SeralPort
24 ServiceController

. 3 Systern Windows.F) Timer
<3 System.Xml L B Printing
<3 USBELAPILib R Pointer
= Forml.cs e
%] Form1 Designer.cs £l PageSetupDialog
- % Forml.resx w = |2 PrintDialog
#] Program.cs - i b |25 PrintDocument
Ll i | 3 L%, PrintPreviewCont...
El Soluti.. B Class Prope.. | « | Th | > [5] PrintPreviewDialog
Error List N = =1 Mhaloge
@ 0Errors | f\ 0 Warnings | (i) 0 Messages \ E ::Uimz :
%] Colorbialog
Beseription il i |Z] FolderBrowserDia...
|47 FentDialog
| OpenFileDialog =
-| SaveFileDialog
=l General
[k Sointec |
ECall Browser| =] Output [Pending Checkins|[23 Error List [2] Object Test Bench 00X Ush61api Contral D
T 4,142 T 100 x50

Ready

4. API function reference

Page.4-7

Double-click the 2 WindowsApplicstiont. - Microsoft Visusl Stucio (ol =]
Fle Edit View Refactor Project Build Debug Data Tools Window Community Help
object, then appear - S E P %2R0 F-E b Dbug - Ay CRU C B
B %bh e =2 | 4 4 &) B 5
the subroutine "Sub Solution Exp.. = & X || FormLes* | WindowsApplicationl” | Forml.cs [Design]*| Start Page | - x |
5 E 2| %2 WindowsApplicationt Forml ~ | ¥ axUsb6lapil_OnEventMsg(ohject sender, AxUSBELART = || £
: 5 [Referenc T)
USbGlapll_OnEVnet - A AUS public partial class Forml : Form &
- «3 Syste | { 2
Msg(...)" that called 3 st suslic sormt() o
-« Syste| i T
.3 Syste InitializeComponent () ;
at when event i St ; 3
- 3 Syste)
e private void axUsb6lapil OnEventMsg(object sender, AxUSB61APILib. Di—
occurs. = [Formlcs | t
- 8 Form
% Form = ¥
« [' ¥ i
K s... [@a.[@per.. | 4] . it ~
See the description S
Ervor List -ox
. @ 0Emors | 0 Warnings | (i) 0 Messages
of the "Detail of API — Ff 2 : = -
functions".
"2 Call Browser| =] Output |G Pending Checkins| [Error List [2] Object Test Bench
Ready Ln20 Col13 ch13 NS

4. API function reference

(4-3) List of API functions

Page.4-8

The list of API functions is as the below:

Table 4-1. API Function Names and Descriptions

Function name

Description

usb61_open()

Open the REX-USB61 device

usb61_close()

Close the REX-USB61 device.

usb61_power_control()

Control the supply power to the device

usb61_get_fw_version()

Get the version number of firmware

usb61_get_dll_version()

Get the version number of DLL

usb61_get_hw_info()

Retrieve the hardware information for the
SPI/I2C bus operation

usb61_mode_change()

Configure SPI/I2C mode
and Master/Slave operation

usb61_set_interval()

Configure the interval time of sending byte
data to the SPI/I2C bus

usb61_gpo_write()

Output to the GPO pin on 12C mode

usb61_i2¢_pullup()

Set pullup on I12C bus
(Each pin of SDA and SCL)

usb61_i2¢_bus_reset()

Reset I12C bus

usb61_i2¢_set_freq()

Configures 12C bus frequency

usb61_i2c_set_freq_ex(

Configures the I2C bus
kilohertz

frequency in

usb61_i2c_read_master()

Read a stream of bytes from the 12C slave
device

usb61_i2c_read_master ex()

Read a stream of bytes from the 12C slave
device with sub-address

usb61_i2c_write_master()

Write a stream of bytes to the I12C slave
device

usb61_i2¢c_read_slave()

Read a stream of bytes from the 12C

master device

usb61_i2c_set_response_data()

Set the data for sending to master device
on 12C slave mode

usb61_spi_set_freq()

Set the SPI bus frequency in kilohertz

usb61_spi_transmit_master()

Write a stream of bytes to the downstream
SPI slave device
*After write, set SS line status to High

usb61_spi_transmit_master_hold_ss()

Write a stream of bytes to the downstream
SPI slave device
*After write, not set SS line status to High

4. API function reference

Page.4-9

(4-4) Detail of API functions
The detail of API functions is as the below.
(See the VB6 sample "EEPROMRWUty" and the VB/C# sample
"EEPROMRWUtyCS", for the calling method and the definition of
function without the use of ActiveX on VB/C#.)

General Functions

Definition | VC HANDLE usb61_open(RS_STATUS *pStatus);
VB Function Usb610pen (pStatus As Long) As Long
VB.NET | Function Usb610pen (ByRef pStatus As Integer) As Integer
C#»> int Usb610pen(ref int pStatus)
Description | Open the REX-USB61 device. Start for using the REX-USB61 device.
Parameters | [OUT] pStatus : RS_SUCCESS Function call succeeded.
Error code (refer. 4-5) Function call failed.
Return Handle of an REX-USB61 device Function call succeeded.
Values INVALID HANDLE _VALUE Function call failed.
Definition | VC RS_STATUS usb61_close(HANDLE hUsb61Device);
VB Function Usb61Close (ByVal hUsb61Device As Long) As Long
vBNET | Function
Usb61Close (ByVal hUsb61Device As Integer) As Integer
C#»> int Usb610pen(ref int pStatus)
Description | Close the REX-USB61 device. Finish using the REX-USB61 device.
Parameters | [IN] hUsb61Device : handle of an REX-USB61 device
Return RS _SUCCESS Function call succeeded.
Values Error code (refer. 4-5) Function call failed.

4. API function reference

Page.4-10

Definition

RS_STATUS
usb61_power_control(HANDLE hUsb61Device,
UINT fPowerState);

VC

Function
Usb61PowerControl (ByVal hUsb61Device As Long,
ByVal fPowerState As Long) As Long

VB

Function
Usb61PowerControl (ByVal hUsb61Device As Integer,
ByVal fPowerState As Integer) As Integer

VB.NET

C#» int Usb61PowerControl(int hUsb61Device, int fPowerState)

Description

Control the supply power to the device

Parameters

[IN] hUsb61Device : handle of an REX-USB61 device

[IN] fPowerState : Enabled / Disabled supply power and the voltage of

power

Set the value of bit operation by using the defined symbol as the
following:

RS_PWRCTRL_ON, RS_OUTPUT_3_3V, RS_OUTPUT_5_0V

And describe the value of bit-mask as the below:

RS_PWRCTRL_OFF Disable supply power.
RS_PWRCTRL_ON | RS_OUTPUT_3_3V

Enable supply power and the voltage is 3.3V.
RS_PWRCTRL_ON | RS_OUTPUT_5_0V

Enable supply power and the voltage is 5.0V.

Return

Values

RS_SUCCESS

Error code (refer. 4-5)

Function call succeeded.

Function call failed.

Definition

RS_STATUS
usb61_get_fw_version(HANDLE hUsb61Device,
UCHAR *pFwMajorVer, UCHAR *pFwMinorVer);

VC

Function
Usb61GetFwVersion(ByVal hUsb61Device As Long,
pFWDMajorVer As Byte,
pFWMinorVer As Byte) As Long

VB

Function
Usb61GetFwVersion(ByVal hUsb61Device As Integer,
ByRef pFWMajorVer As Byte,
ByRef pFWMinorVer As Byte) As Integer

VB.NET

C#» int Usb61GetFwVersion(int hUsb61Device,

ref byte pFWMajorVer, ref byte pPFWMinorVer)

Description

Get the version number of firmware

Parameters

[IN] hUsb61Device : handle of an REX-USB61 device

[OUT] *pFwMajorVer : Pointer to majar version number of Firmware
(Hex-decimal)

[OUT] *pFwMinorVer: Pointer to minor version number of Firmware
(Hex-decimal)

Return

Values

RS_SUCCESS

Error code (refer. 4-5)

Function call succeeded.

Function call failed.

4. API function reference Page.4-11

Definition | VC RS_STATUS , ,
usb61_get_dll_version(HANDLE hUsb61Device,
UCHAR *pDI1IMajorVer, UCHAR *pDIIMinorVer);
VB Function
Usb61GetDI1lVersion(ByVal hUsb61Device As Long,
pDIllIMajorVer As Byte,
pDIlIMinorVer As Byte) As Long
VB.NET Function
Usb61GetDI1lVersion(ByVal hUsb61Device As Integer,
ByRef pDlIMajorVer As Byte,
ByRef pDlIMinorVer As Byte) As Integer
C#> int Usb61GetDlIVersion(int hUsb61Device,
ref byte pD1lIMajorVer,
ref byte pDlIMinorVer)
Description | Get the version number of DLL.
Parameters | [IN] hUsb61Device : handle of an REX-USB61 device
[OUT] *pDIliMajorVer : Pointer to majar version number of DLL
(Hex-decimal)
[OUT] *pDIliMinorVer : Pointer to minor version number of DLL
(Hex-decimal)
Return RS _SUCCESS Function call succeeded.
Values Error code (refer. 4-5) Function call failed.

4. API function reference Page.4-12

Definition

vC RS_STATUS
usb61_get_hw_info HANDLE hUsb61Device,
PRS_HARDWARE_INFO pHardwarelnfo);

VB Function
Usb61GetHwInfo(ByVal hUsb61Device As Long,
pHardwareInfo As Byte) As Long

VB.NET | Function
Usb61GetHwInfo(ByVal hUsb61Device As Integer,
ByRef pHardwareInfo As Object) As Integer

C#» int Usb61GetHwInfo(int hUsb61Device,
ref object pHardwareInfo)

Description

Retrieve the hardware information for the SPI/I2C bus operation

Parameters

[IN] hUsb61Device : handle of an REX-USB61 device
[OUT] pHardwareInfo : pointer to _RS_HARDWARE_INFO structure

The RS HARDWARE_INFO structure is described bellow:

typedef struct _RS_HARDWARE_INFO {
UCHAR DeviceMode; /I SPI/I2C mode
UCHAR MasterSlaveAct; // Master/Slave operation
USHORT Frequency; /I frequency of interface
UCHAR OutputVolt; /I Output voltage for target device
} RS_HARDWARE_INFO, *PRS_HARDWARE_INFO;

_RS_HARDWARE_INFO structure is defined in usb61def.h.

sample code for VB as the dellow:

Dim pHardWareBuf() As Byte
Dim HardWarelnfo As RS HARDWARE_INFO

ReDim pHardWareBuf(10) As Byte
rsStatus = Usb6lapi.Usb61GetHwInfo(m_hDeviceHandle,
pHardWareBuf)
If rsStatus <> RS_SUCCESS Then
' error process
Else
HardWareInfo.DeviceMode = pHardWareBuf(0)
HardWarelInfo.MasterSlaveAct = pHardWareBuf(1)
HardWarelnfo.Frequency =
pHardWareBuf(3)*256 + pHardWareBuf(2)
HardWareInfo.OutputVolt = pHardWareBuf(4)
End If

Return

Values

RS_SUCCESS Function call succeeded.

Error code (refer. 4-5) Function call failed.

4. API function reference Page.4-13
Definition | VC RS_STATUS ,
usb61_mode_change(HANDLE hUsb61Device,
UINT fDeviceMode, USHORT i2cSlaveAddr);
VB Function
Usb61ModeChange(ByVal hUsb61Device As Long,
ByVal fDeviceMode As Long,
ByVal i2cSlaveAddr As Integer) As Long
VB.NET Function
Usb61ModeChange(ByVal hUsb61Device As Integer,
ByVal fDeviceMode As Integer,
ByVal i2cSlaveAddr As Short) As Integer
C#» int Usb61ModeChange(int hUsb61Device,
int fDeviceMode,
short i2cSlaveAddr)
Description | Configure SPI/I2C mode and Master/Slave operation.
Parameters | [IN] hUsb61Device : Handle of an REX-USB61 device

[IN] fDeviceMode : Device mode setting bits
Set the value of bit operation by using the defined symbol as the
following:

RS_DEVMODE_SPI
RS_DEVMODE_I2C
RS_DEVMODE_MASTER
RS_DEVMODE_SLAVE

SPI mode

12C mode
Master operation
Slave operation

Example:
RS_DEVMODE_SPI | RS_DEVMODE_MASTER (SPI master)

[IN] i2cSlaveAddr : Address of I2C target device, when set 12C slave

mode.

Return

Values

RS_SUCCESS

Error code (refer. 4-5)

Function call succeeded.

Function call failed.

Definition

RS_STATUS
usb61_set_interval(HANDLE hUsb61Device,
USHORT IntervalCnt);

VvC

Function
Usb61SetInterval(ByVal hUsb61Device As Long,
ByVal IntervalCnt As Long) As Long

VB

Function
Usb61SetInterval(ByVal hUsb61Device As Integer,
ByVal IntervalCnt As Integer) As Integer

VB.NET

C#> int Usb61SetInterval(int hUsb61Device, int intervalCnt)

Description

Configure the interval time of sending byte data to the SPI/I2C bus.
(a micro-second unit)

* The actual interval is longer than the time set, because includes
processing time.

(If do not call this function, then actual interval is 0 micro-second)
* Need to call usb61_mode_change(), before calling this function.

Parameters

[IN] hUsb61Device : handle of an REX-USB61 device
[IN] IntervalCnt : Interval for send data (micro-second: 0 - 65535)

Return

Values

RS_SUCCESS
Error code (refer. 4-5)

Function call succeeded.

Function call failed.

4. API function reference Page.4-14

Definition

Ve RS_STATUS
usb61_i2¢_pullup(HANDLE hUsb61Device,
RS_I2C_PULLUP fI2¢cPullup);

VB Function
Usb6112cPullup(ByVal hUsb61Device As Long,
ByVal fI2cPullup As Integer) As Long

VB.NET Function
Usb6112cPullup(ByVal hUsb61Device As Integer,
ByVal fI2cPullup As Short) As Integer

C#> int Usb61I2cPullup(int hUsb61Device, short fI2cPullup)

Description

Set pullup on I2C bus. (Each pin of SDA and SCL)

Parameters

[IN] hUsb61Device : handle of an REX-USB61 device
[IN] fI2cPullup : pullup setting

Set the value by using the defined symbol as the following:

RS_I2C_PULLUP_DISABLE Not set pull-up the pin SCL and SDA.
RS_I2C_PULLUP_ENABLE Set pull-up the pin of SCL and SDA.

* When I2C, SPI mode, always set ENABLE.(Can select only 1IMHz I12C
mode)

Return

Values

RS_SUCCESS Function call succeeded.

Error code (refer. 4-5) Function call failed.

GPO (Only on I12C mode)

Definition

e RS_STATUS
usb61_gpo_write(HANDLE hUsb61Device,
UINT fPortVal);

VB Function
Usb61GpoWrite(ByVal hUsb61Device As Long,
ByVal fPortVal As Long) As Long

VB.NET Function
Usb61GpoWrite(ByVal hUsb61Device As Integer,
ByVal fPortVal As Integer) As Integer

C#» int Usb61GpoWrite(int hUsb61Device, int fPortVal)

Description

Output to the GPO pin on 12C mode.

Parameters

[IN] hUsb61Device : handle of an REX-USB61 device
[IN] fPortVal ! a bitmask specifying which outputs to GPO pin.

GPO line location of bit mask by using the defined symbol as the following:

RS GPO_NONE Set Low(=0) to all port
RS_GPO_PORTO Set High(=1) to PORTO0
RS_GPO_PORT1 Set High(=1) to PORT1
RS_GPO_PORT2 Set High(=1) to PORT2
RS_GPO_PORT3 Set High(=1) to PORT3

For setting to multiple GPO port at the same time, bit operation as the
following:

example:

RS_GPO_PORTO | RS_GPO_PORT1 output PORT1 and PORT2

Return

Values

RS_SUCCESS Function call succeeded.

Error code (refer. 4-5) Function call failed.

4. API function reference Page.4-15

General on I2C mode

Definition

Ve RS_STATUS usb61_i2¢_bus_reset(HANDLE hUsb61Device);

VB Function
Usb6112cBusReset(ByVal hUsb61Device As Long) As Long

VB.NET Function
Usb6112cBusReset(ByVal hUsb61Device As Integer)
As Integer

C#> int Usb6112cBusReset(int hUsb61Device)

Description

Reset I2C bus. Set the Stop condition to the I12C bus

Parameters

[IN] hUsb61Device : handle of an REX-USB61 device

Return

Values

RS_SUCCESS Function call succeeded.

Error code (refer. 4-5) Function call failed.

Definition

Ve RS_STATUS
usb61_i2¢_set_freq(HANDLE hUsb61Device,
RS_I2C_FREQ fI2cFreq);

VB Function
Usb6112cSetFreq(ByVal hUsb61Device As Long,
ByVal fI2cFreq As Integer) As Long

VB.NET Function
Usb6112cSetFreq(ByVal hUsb61Device As Integer,
ByVal fI2cFreq As Short) As Integer

C#> int Usb6112cSetFreq(int hUsb61Device, short fI2cFreq)

Description

Configures I12C bus frequency

Parameters

[IN] hUsb61Device : handle of an REX-USB61 device
[IN] fI2cFreq ‘the frequency of I12C bus

enumerated type of freqency by using the defined symbol as the following:

RS 12C_FREQ_ 1M 1MHz
RS I12C_FREQ 400K 400KHz
RS 12C_FREQ 100K 100KHz

Return

Values

RS SUCCESS Function call succeeded.

Error code (refer. 4-5) Function call failed.

4. API function reference Page.4-16

Definition | VC RS_STATUS
usb61_i2c_set_freq_ex(HANDLE hUsb61Device,
USHORT Frequency, USHORT *pActualFrequency);

VB Function

Usb6112cSetFreqEx(ByVal hUsb61Device As Long,
ByVal Frequency As Long,
pActualFrequency As Long) As Long

VB.NET Function
Usb6112cSetFreqEx(ByVal hUsb61Device As Integer,
ByVal Frequency As Integer,
ByRef pActualFrequency As Integer) As Integer

C#» int Usb61I2cSetFreqEx(int hUsb61Device,

int frequency,

ref int pActualFrequency)

Description | Configures the I12C bus frequency in kilohertz.
Can be set from 47 to 100KHz.

The actual frequency value to be set return to the pActualFrequency.

Parameters | [IN] hUsb61Device : Handle of an REX-USB61 device
[IN] Frequency : The frequency to request on I12C bus
[OUT] pActualFrequency : The actual frequency value to be set

Return RS SUCCESS Function call succeeded.

Values Error code (refer. 4-5) Function call failed.

4. API function reference Page.4-17

I2C bus operation on I2C bus master mode

Definition | VC RS—STATPUS .
usb61_i2¢_read_master(HANDLE hUsb61Device,
USHORT SlaveAddress, UINT fI2¢Option,
USHORT ReadBytes, UCHAR *pReadBuf);
VB Function
Usb6112cReadMaster(ByVal hUsb61Device As Long,
ByVal SlaveAddress As Integer, ByVal fI2cOption As Long,
ByVal ReadBytes As Integer, pReadBuf As Byte) As Long
VB.NET Function
Usb6112cReadMaster(ByVal hUsb61Device As Integer,
ByVal slaveAddress As Short, ByVal fI2¢Option As Integer,
ByVal readBytes As Short, ByRef pReadBuf As Object)
As Integer
C#> int Usb6112cReadMaster(int hUsb61Device,
short slaveAddress,
int fI2cOption,
short readBytes,
ref object pReadBuf)
Description | Read a stream of bytes from the I2C slave device.
Parameters | [IN] hUsb61Device : handle of an REX-USB61 device
[IN] SlaveAddress :the slave from which to read. See the below
[IN] fI2cOption : special operation as described in "Table 4-2" and below
[IN] ReadBytes :the number of bytes to read
[OUT] pReadBuf : pointer to data to read.
Return RS_SUCCESS Function call succeeded.
Values Error code (refer. 4-5) Function call failed.

*Slave address:
Specify the slave address in 7bits or 10bits, not includes R/W bit.

A6 T A5 1 A4

A3 1 A2 ' Al 1 A0 | R'W

7

~—

Slave address

[Examples : slave address = 52h |

0i0 (1 0 |RW

4. API function reference Page.4-18

Definition

Ve RS_STATUS
usb61_i2¢c_read_master ex(HANDLE hUsb61Device,
USHORT SlaveAddress, USHORT SubAddress,
UINT fI2¢Option, USHORT ReadBytes,
UCHAR *pReadBuf);

VB Function
Usb61I2cReadMasterEx(ByVal hUsb61Device As Long,
ByVal SlaveAddress As Integer,
ByVal SubAddress As Integer,
ByVal fI2¢Option As Long,
ByVal ReadBytes As Integer,
pReadBuf As Byte) As Long

VB.NET Function
Usb61I2cReadMasterEx(ByVal hUsb61Device As Integer,
ByVal slaveAddress As Short, ByVal subAddress As
Short,
ByVal fI2cOption As Integer, ByVal readBytes As Short,
ByRef pReadBuf As Object) As Integer

C#> int Usb61I2cReadMasterEx(int hUsb61Device,
short slaveAddress,
ushort subAddress,
int fI2cOption,
short readBytes,

ref object pReadBuf)

Description

Read a stream of bytes from the I12C slave device with sub-address.
It is different from the "usb61_i2c_read_master" function that write data
before for reading with the specifying the calling position (specifying

sub-address) on inside function.

Parameters

[IN] hUsb61Device : handle of an REX-USB61 device
[IN] SlaveAddress : the slave from which to read.

See *Slave address in Page4-16.
SubAddress : Sub address (supports 2 bytes-address)

fI2¢Option : special operation as described in "Table 4-2" and below

ZZZ

ReadBytes :the number of bytes to read

[
[
[
[OUT] pReadBuf : pointer to data to read.

Return

Values

RS_SUCCESS Function call succeeded.

Error code (refer. 4-5) Function call failed.

4. API function reference Page.4-19

Definition | VC RS_STATUS .
usb61_i2¢c_write_master(HANDLE hUsb61Device,
USHORT SlaveAddress,UINT fI2cOption,
USHORT WriteBytes,UCHAR *pWriteBuf);
VB Function
Usb6112cWriteMaster(ByVal hUsb61Device As Long,
ByVal SlaveAddress As Integer,
ByVal fI2¢Option As Long,
ByVal WriteBytes As Integer,
ByVal pWriteBuf As Byte) As Long
VB.NET Function
Usb6112cWriteMaster(ByVal hUsb61Device As Integer,
ByVal slaveAddress As Short,
ByVal fI2cOption As Integer,
ByVal writeBytes As Short,
ByVal pWriteBuf As Object) As Integer
C#> int Usb61I2cWriteMaster(int hUsb61Device,
short slaveAddress,
int fI2cOption,
short writeBytes,
object pWriteBuf)
Description | Write a stream of bytes to the 12C slave device
Parameters | [IN] hUsb61Device : handle of an REX-USB61 device
[IN] SlaveAddress : the slave from which to read.
See *Slave address in Page4-16.
[IN] fI2cOption : special operation as described in "Table 4-2" and below
[IN] WriteBytes :the number of bytes to write
[IN] pWriteBuf : pointer to data to write
Return RS_SUCCESS Function call succeeded.
Values Error code (refer. 4-5) Function call failed.

Table 4-2. Special operation on I12C bus

Literal Name Value Description
RS I2C_ FLAG NONE 0x00 | No flags.
RS_I2C_FLAG_10BIT_ADDR | 0x01 | For 10-bits address device
RS _I2C_FLAG_STOP 002 Set before issue the stop condition
RS I2C_FLAG_1BYTE_SA 0x04 | Send 1 byte sub-address before reading data
RS _I2C_FLAG _2BYTE_SA 0x0C | Send 2 bytes sub-address before reading data

4. API function reference Page.4-20

I12C bus operation on I2C bus slave mode

Definition

\e RS_STATUS
usb61_i2¢c_read_slave(HANDLE hUsb61Device,
RS_NOTIFY_TYPE nType,
void (CALLBACK EXPORT* lpfnReadEvent)
(USHORT ReadBytes, UCHAR *pReadBuf),
HWND hWnd);

VB Function
Usb61I2cReadSlave(ByVal hUsb61Device As Long,
ByVal nType As Integer) As Long

VB.NET Function
Usb61I2cReadSlave(ByVal hUsb61Device As Integer,
ByVal nType As Short) As Integer

C#»> int Usb6112cReadSlave(int hUsb61Device, short nType)

Description

Read a stream of bytes from the I12C master device.

In background, waiting until it receives the data from master device, after call this
function.

The completion of receiving the data, it is notified to the application via callback
function.

Before calling this function, have to call the “usb61_I2c_set_response_data()”
function to set the data for sending to master device in advance.

On Visual Basic, by using ActiveX control, as user-defined-message
"WM_USB61_MSG" is notified.

Parameters

[IN] hUsb61Device : handle of an REX-USB61 device
[IN] nType * notification method

enumerated type of notification method by using the defined symbol as the following:

RS_NOTIFY_CALLBACK notified by callback function (only VC)
RS_NOTIFY_USER_MSG notified by user message

[IN] IpfnReadEvent: callback function which notify to application

'IpfnReadEvent' callback function supplied by the upper application is set as the
argument.

The name of 'IpfnReadEvent' callback function does not have to be 'ReadIsComplete’,
but it must be defined as follows:

void CALLBACK EXPORT ReadIsComplete(USHORT ReadBytes, UCHAR *pReadBuf);

[IN] hWnd : window handle which notify user message
if not notify user message, set NULL

Return

Values

RS_SUCCESS Function call succeeded.

Error code (refer. 4-5) Function call failed.

4. API function reference Page.4-21

Definition

Ve No use on VC

VB Function
Usb61GetData(ByVal wParam As Long,
ByVal 1Param As Long, pBuf As Byte) As Long

VB.NET Function
Usb61GetData(ByVal wParam As Integer,
ByVal 1Param As Integer, ByRef pBuf As Object) As Integer

C#» int Usb61GetData(int wParam, int IParam, ref object pBuf)

Description

Get the data by wusing the “Usb61I2cReadSlave” function, when the
"WM_USB61_MSG" message is posted

Parameters

[IN] wParam : the number of bytes to read
[IN] IParam address of the data to read
[OUT] pBuf : pointer to the data to read

Example on VB-

Private Sub Usb61api_OnEventMsg(ByVal wParam As Long, ByVal 1Param As Long)
' Status code
Dim rsStatus As Long
Dim pBuf(As Byte

ReDim pBuf(wParam) As Integer

rsStatus = Usb61api.Usb61GetData(wParam, IParam, pBuf)
End Sub

Return

Values

RS_SUCCESS Function call always succeeded.

Definition

Ve RS_STATUS
usb61_i2¢c_set_response_data(HANDLE hUsb61Device,
USHORT ResponseBytes, UCHAR *pResponseBuf);

VB Function

Usb6112cSetResponseData(ByVal hUsb61Device As Long,
ByVal ResponseBytes As Integer,
ByVal pResponseBuf As Byte) As Long

VB.NET Function
Usb6112cSetResponseData(ByVal hUsb61Device As Integer,
ByVal responseBytes As Short,
ByVal pResponseBuf As Object) As Integer

C#» int Usb61I2cSetResponseData(int hUsb61Device,

short responseBytes,

object pResponseBuf)
Description | Set the data for sending to master device on I12C slave mode
When receive data from master device, send the data pre-set for master
Parameters | [IN] hUsb61Device : handle of an REX-USB61 device
[IN] ResponseBytes :the number of bytes for sending to master device
(IN] pResponseBuf ‘pointer to the data for sending to master device
Return RS_SUCCESS Function call succeeded.
Values Error code (refer. 4-5) Function call failed.

4. API function reference Page.4-22

SPI bus operation on SPI bus master mode

Definition

\e RS_STATUS
usb61_spi_set_freq(HANDLE hUsb61Device, UINT fDataMode,
USHORT Frequency, USHORT *pActualFrequency);

VB Function

Usb61SpiSetFreq(ByVal hUsb61Device As Long,
ByVal fDataMode As Long, ByVal Frequency As Long,
pActualFrequency As Long) As Long

VB.NET Function

Usb61SpiSetFreq(ByVal hUsb61Device As Integer,
ByVal fDataMode As Integer, ByVal frequency As Integer,
ByRef pActualFrequency As Integer) As Integer

C#> int Usb61SpiSetFreq(int hUsb61Device,
int fDataMode,

int frequency,

ref int pActualFrequency)

Description

Set the SPI bus frequency in kilohertz.

Can be set from 1 to 12000KHz.

The approximate value of frequency that can be set 1is calculated from the
'Frequency' parameter.

The actual frequency value to be set, returns to the 'pActualFrequency' parameter.

Note: The approximate value of frequency will be calculated as the follows:

The X is the integer part of the value that 6024 divided by the 'Frequency'
parameter.

If the X is greater than or equal to 1020, [X >= 1020]

Y = integer of (X / 16)
*pAcutualFrequency = integer of 6024 /(Y * 16)

The Y is the integer part of the value that X divided by 16.
The integer part of the value which 6024 divided by 16 multiple of Y, will set to
the 'pAcutualFrequency' parameter.

If the X is greater than or equal to 256 and smaller than 1020 [256 =< X < 1020]

Y = integer of (X / 4)
*pAcutualFrequency = integer of 6024 /(Y * 4)

The Y is the integer part of the value that X divided by 4.
The integer part of the value which 6024 divided by 4 multiple of Y, will set to the
'pAcutualFrequency' parameter.

If the X is smaller than 256 [X < 256]
*pAcutualFrequency = integer of 6024 / X

The integer part of the value which 6024 divided by X, will set to the
'pAcutualFrequency' parameter.

When the 'Frequency' parameter is 1, 750, 300, 12000(KHz), these frequency has
special setting value.

Therefore, the same value as the Frequency is returned to the 'pActualFrequency’
parameter.

When the 'Frequency' parameter is greater than or equal to 3013(KHz),
12000(KHz) will set to the "pAcutualFrequency' parameter.

4. API function reference Page.4-23

Parameters

[IN] hUsb61Device : handle of an REX-USB61 device
[IN] fDataMode : a bit mask specifying which operation mode for sending on
SPI bus.

The clock polarity and the clock edge determine the value of bit mask.

The bit mask by using the defined symbol as the following:
RS SPI PHASE SETUP SAMPLE sampling on rising edge
RS SPI PHASE SAMPLE _SETUP sampling on falling edge
RS SPI POLARITY POSITIVE clock polarity is positive
RS _SPI POLARITY NEGATIVE clock polarity is negative
RS_SPI_MSB_FIRST MBS first
RS_SPI_LSB_FIRST LSB first

example:

RS_SPI_PHASE_SETUP_SAMPLE | RS_SPI_POLARITY_POSITIVE | RS_SPI_MSB_FIRST
[IN] Frequency : the frequency to request on SPI bus
[OUT] pActualFrequency: the actual frequency value to be set

Return

Values

RS_SUCCESS Function call succeeded.

Error code (refer. 4-5) Function call failed.

Definition

Ve RS_STATUS

ush61_spi_transmit master(HANDLE hUsb61Device,
RS_SPI_SS fSlaveSelect, USHORT TransmitSize,
UCHAR *pSendBuf, UCHAR *pRecvBuf);

VB Function

Usb61SpiTransmitMaster(ByVal hUsb61Device As Long,
ByVal fSlaveSelect As Integer, ByVal TransmitSize As Integer,
ByVal pSendBuf As Byte, pRecvBuf As Byte) As Long

VB.NET Function
Usb61SpiTransmitMaster(ByVal hUsb61Device As Integer,
ByVal fSlaveSelect As Short, ByVal transmitSize As Short,
ByVal pSendBuf As Object, ByRef pRecvBuf As Object) As Integer

C#> int Usb61SpiTransmitMaster(int hUsb61Device, short fSlaveSelect,
short transmitSize, object pSendBuf,

ref object pRecvBuf)

Description

Write a stream of bytes to the downstream SPI slave device and read back dummy
data.
After write, set SS line status to High.

Parameters

[IN] hUsb61Device : handle of an REX-USB61 device
[IN] fSlaveSelect : Pin number for slave select

enumerated values specifying pin number the bellow:

RS_SPI_SS0 Slave select pin number 0
RS_SPI_SS1 Slave select pin number 1
RS_SPI_SS2 Slave select pin number 2
RS_SPI_SS3 Slave select pin number 3

[IN] TransmitSize :the number of bytes to write
[IN] pSendBuf : pointer to write data
[OUT] pRecvBuf : pointer to read back data

Return

Values

RS SUCCESS Function call succeeded.

Error code (refer. 4-5) Function call failed.

4. API function reference Page.4-24

Definition | VC RS_STATUS , ,
usb61_spi_transmit_master_hold_ss(HANDLE hUsb61Device,
RS_SPI_SS fSlaveSelect, USHORT TransmitSize,
UCHAR *pSendBuf, UCHAR *pRecvBuf);
VB Function
Usb61SpiTransmitMasterHoldSS(ByVal hUsb61Device As Long,
ByVal fSlaveSelect As Integer, ByVal TransmitSize As Integer,
ByVal pSendBuf As Byte, pRecvBuf As Byte) As Long
VB.NET Function
Usb61SpiTransmitMasterHoldSS(ByVal hUsb61Device As Integer,
ByVal fSlaveSelect As Short, ByVal transmitSize As Short,
ByVal pSendBuf As Object, ByRef pRecvBuf As Object) As Integer
C#> int Usb61SpiTransmitMasterHoldSS(int hUsb61Device,
short fSlaveSelect,
short transmitSize,
object pSendBuf,
ref object pRecvBuf)
Description | Write a stream of bytes to the downstream SPI slave device and read back dummy
data.
After write, not set SS line status to High.
For setting SS line to High, call usb61_gpo_write function.
Parameters | [IN] hUsb61Device : handle of an REX-USB61 device
[IN] fSlaveSelect ! Pin number for slave select
enumerated values specifying pin number the bellow:
RS_SPI_SS0 Slave select pin number 0
RS_SPI SS1 Slave select pin number 1
RS_SPI SS2 Slave select pin number 2
RS_SPI_SS3 Slave select pin number 3
[IN] TransmitSize :the number of bytes to write
[IN] pSendBuf : pointer to write data
[OUT] pRecvBuf ! pointer to read back data
Return RS SUCCESS Function call succeeded.
Values Error code (refer. 4-5) Function call failed.

4. API function reference

(4-5) Error Codes

Page.4-25

Table 4-3. API Error Codes

Literal Name Value Description
RS_SUCCESS 0 Function call succeeded
RS_OK 0 ok
RS_DEVICE_FOUND 0 device is found
RS_DEVICE_CONNECT 0 device is connected
RS_UNABLE_TO_LOAD_LIBRARY -1 unable to load library
RS_UNABLE_TO_LOAD_DRIVER 9 unable to load REX-USB61

driver
RS_UNABLE_TO_LOAD_FUNCTION -3 unable to call function
RS INCOMPATIBLE LIBRARY -4 incompatible library version
RS_INCOMPATIBLE_DEVICE -5 incompatible device
RS_COMMUNICATION_ERROR -6 communication error
RS_UNABLE_TO_OPEN -7 unable to open device
RS_UNABLE_TO_CLOSE -8 unable to close device
RS_INVALID_HANDLE -9 invalid device handle
RS_CONFIG_ERROR -10 | configuration error
RS TIMEOUT -11 time out
RS_OUT_OF_RANGE -12 | out of range
RS_DEVICE_NOT_FOUND -20 | device not found
RS_DEVICE_NOT_CONNECT -21 | device not connected
RS_DEVICE_OPEN_EXIST -22 | device already opened
RS_I2C_NOT_AVAILABLE -100 | I2C bus not available
RS_12C_NOT_ENABLED -101 | I2C not enabled
RS I2C_READ _ERROR -102 | I2C read error
RS_I2C_WRITE_ERROR -103 | I2C wrtie error
RS_12C_BAD_CONFIG -104 | I2C bad configuration
RS_I2C_TIMEOUT -105 | I2C bus timeout
RS_I12C_DROPPED_EXCESS_BYTES | -106 | I2C dropped excess bytes
RS_12C_BUS_ALREADY_FREE -107 | I2C bus already free
RS_12C_WRITE_COLLISION -108 | I2C write collision
RS_I2C_READ_OVERFLOW -109 | I12C read overflow
RS_I2C_NACK_DETECT -110 | I2C no ack detected
RS_I12C_OUTRANGE -111 | I2C out of range
RS_SPI_NOT_AVAILBLE -200 | SPI bus not available
RS_SPI_NOT_ENABLED -201 | SPI bus not enabled
RS SPI WRITE_ERROR -202 | SPI write error
RS_SPI_READ_ERROR -203 | SPI read error
RS_SPI_BAD_ CONFIG -204 | SPI bad configuration
RS_SPI_TIMEOUT -205 | SPI bus timeout
RS_SPI_DROPPED_EXCESS_BYTES | -206 | SPI dropped excess bytes
RS_SPI_WRITE_OVERFLOW -207 | SPI write overflow
RS_SPI_ OUTRANGE -208 | SPI out of range
RS_GPO_NOT_AVAILABLE -300 | GPO port not available
RS_FAILURE -400 | general error

* A positive value of except above is error code of Win32.

4. API function reference Page.4-26

(4-6) Sample Applications

REX-USB61 includes a sample application of reference of the application
development.

The "EEPROM R / W Utility" sample application that can read and write

for the EEPROM (ATMEL AT24C02B, AT25080A) with I2C interface or SPI.
It includes in the "EEPROMRWUty" folder.

The "I2cSlaveSample" sample application can work as 12C slave for the
REX-USB61.
It includes in the "I2CSlaveSample" folder.

[Description of EEPROM R/W Utility]

Select SPI/I2C Bus select mode SPI or I12C
Direction Read or Write
Operation Frequency Enter the frequency for setting
Actual Frequency Display the frequency that calculated from the above value.
Interval Configure Interval of 1 byte for sending
12C Target address Enter 12C target address
EEPROM Address Start position for reading or writing
Transfer length Transfer length for reading or writing
Write Data Transfer data for writing
Read Data Display received data
Execute Start transfer by the above settings
2 EEPROM R/W Utility [=] =@ ==
Write Data Transfer Settings
Select SPIIZC Bus
+ SPI CRG
Direction (Read/\Write }
+ Read " Write

Operation Frequency Actual Frequency

100 2 KHz
Interval (time interval of each byte}
D usec
Read Data el
| EEPROM Address (Read/Write position)
0oy

Transfer length (Read/Write bytes)

256

Target Device

SPIEEPROM: [2C EEPROM :

AT25080A AT24C02B
Compatible Compatible
device: device:
AT25160A AT24C01A
AT25320A AT24C02
AT256404 AT24C04

AT24C08A
AT24C16A

[View of EEPROM R/W Utility]

See the source code for programming.
And refer to the specification of the EEPROM which the EEPROM maker

provides.

4. API function reference

Page.4-27

[Description of I2CSlaveSamplel]
I12C Slave address ... Set I2C slave address
Operation Frequency of I2C Master

Response data
Execute
Recelve data

Clear

.... Select frequency of I2C master device
. Set response data for I2C master
. Start for I12C slave
. Display receive data from I2C master
. Erase displayed receive data

e [2cSlaveSample

|2C Slave operation Settings
12C Slave Address

[T i

Operation Frequency of [2C Master
(* Standard or Fast Mode (Operation frequency <=400KHz)
" High-Speed Mode (Operation frequency > 400KHz)

Response data for [2C Master

=& (=

Data transfer log

Receive data from |2C Master

Clear ‘ Start |

Clear

[View of I2CSlaveSamplel

See the source code for programming.

4. API function reference Page.4-28

(4-7) How to develop application using this API functions

This section describes how to create a control application using the REX-USB61 API
functions.

It is an example in C++. If you want to know in other programming language or

detail, refer to the source code of the sample programs.

Example - EEPROM R/W Utility [12C] :
Output a byte 'FF' hex-decimal data from SDA line. (C++)

It does not include error handling.

HANDLE hDeviceHandle; /I Device handle
BYTE DeviceAddr; // Device address
WORD DataLen; /I Transfer length
USHORT i2cFreq; /I Operating frequency
WORD ActualFreq; /I Actual frequency
USHORT IntervalCnt; I/ Interval

BYTE Data; /I Data for writing

/I Get device handle
hDeviceHandle = usb61_open(&rsStatus);

/I Supply 5.0V power to target device.

/I Using the source power from target device without from REX-USB61,

I/ Set RS_PWRCTRL_OFF

usb61_power_control(hDeviceHandle, RS_PWRCTRL_ON | RS_OUTPUT_5_0V);

/I Set I12C master mode
usb61_mode_change(hDeviceHandle, RS_DEVMODE_I2C | RS_DEVMODE_MASTER, NULL);

/I Set Interval (After I12C mode changed)

usb61_set_interval(hDeviceHandle, IntervalCnt);

/I Set 12C bus pull-up
usb61_i2¢_pullup(hDeviceHandle, RS_I2C_PULLUP_ENABLE);

/I Set frequency
usb61_i2c_set_freq_ex(hDeviceHandle, i2cFreq, &ActualFreq);

/I Output a byte ‘FF” hex-decimal data from SDA line

/I Set target device address to the “DeviceAddr”. Do not include R/W bit,

/I Set x00 to Device address.

DeviceAddr = 0x00; // Device address = 0x00

Data = 0xFF; // Abyte ‘FF hex-decimal data

DataLen =1 // length of data =1

usb61_i2¢c_write_master(hDeviceHandle, DeviceAddr, RS_I2C_FLAG_STOP, DataLen, &Data);

/I Finish using the REX-USB61 device
usb61_close(hDeviceHandle);
hDeviceHandle = NULL;

4. API function reference

Example - EEPROM R/W Utility [SPI] :
Output a byte 'FF' hex-decimal data from SDO line. (C++)

It does not include error handling.

Page.4-29

HANDLE hDeviceHandle; /] Device handle

WORD DataLen; /I Transfer length

USHORTSspiFreq; /I Operating frequency

WORD ActualFreq; /I Actual frequency

BYTE pWriteBuf; /I Store data for writing

BYTE pReadBuf; /] Store data for reading

UINT uiFlag; // bit combination of clock leading or trailing, polarity

/I Get device handle
hDeviceHandle = usb61_open(&rsStatus);

/I Supply 5.0V power to target device.

/I Using the source power from target device without from REX-USB61,

I/ Set RS_PWRCTRL_OFF

usb61_power_control(hDeviceHandle, RS_PWRCTRL_ON | RS_OUTPUT_5_0V);

/I Set SPI master mode
usb61_mode_change(hDeviceHandle, RS_DEVMODE_SPI | RS_DEVMODE_MASTER, NULL);

/I Set Interval (After SPI mode changed)

usb61_set_interval(hDeviceHandle, IntervalCnt);

I Set frequency

uiFlag = RS_SPI_PHASE_SAMPLE_SETUP | RS_SPI_POLARITY_POSITIVE
| RS_SPI_MSB_FIRST;

usb61_spi_set_freq(hDeviceHandle, uiFlag, spiFreq, &ActualFreq);

/ Send the Write Enable command(0x06)

pWriteBuf[0] = 0x06; // WREN command

Datalen =1 /I Transfer length

usb61_spi_transmit_master(hDeviceHandle, RS_SPI_SS0, DataLen, pWriteBuf, pReadBuf);

// Output a byte ‘FF’ hex-decimal data from SDO line

// Send [Write command(0x02) + EEPROM address(0x0000) + data for writing(0xff)] 4bytes
pWriteBuf[0] = 0x02 // Write command

pWriteBuf[1] = 0x00 // EEPROM address(upper byte)

pWriteBuf[2] = 0x00 // EEPROM address(lower byte)

pWriteBuf[3] = 0xff // Data for writing

Datalen =4 /I Transfer length

usb61_spi_transmit_master(hDeviceHandle, RS_SPI_SS0, DataLen, pWriteBuf, pReadBuf);
/I In reading, after the fourth of byte are data.

/l Finish using the REX-USB61 device
usb61_close(hDeviceHandle);
hDeviceHandle = NULL;

4. API function reference Page.4-30

Example — I2¢SlaveSample [12C] :

This program operates as a slave device for REX-USB61.

When reading from the I2C master device, send the response data which prepared
in advance to the I2C master device.

The transmission of data from the I2C master device is notified by the event of
receipt or the callback function.

And it is displayed on the application program. (C++)

It does not include error handling.

HANDLE hDeviceHandle; /I Device handle

char csSlaveAddr[16]; /I Character string for I2C slave address
ULONG ulSlaveAddr; /I 12C slave address

char *stopstring;

USHORT usFreq; /I Operating frequency

USHORT usActualFreq; /I Actual frequency

BYTE ResponseBuf[255]; /I response data

WORD ResponseBytes; // length of response data

/I Get device handle
hDeviceHandle = usb61_open(&rsStatus);

/I Supplies a power supply from 12C master
/l REX-USB61 does not supply power
usb61_power_control(hDeviceHandle, RS_PWRCTRL_OFF);

/I 12C salve address
GetDlgltemText(hwnd, IDE_SLAVE_ADDRESS, csSlaveAddr, sizeof(csSlaveAddr));
ulSlaveAddr = strtoul(csSlaveAddr, &stopstring, 16);

/I Set 12C slave mode
usb61_mode_change(hDeviceHandle, RS_DEVMODE_I2C | RS_DEVMODE_SLAVE,
(USHORT)ulSlaveAddr);

/I Enable pull-up

usb61_i2¢c_pullup(hDeviceHandle, (RS_I2C_PULLUP)fPullup);

/I Set frequency
usb61_i2c_set_freq_ex(hDeviceHandle, usFreq, &usActualFreq);

/I Set response data

// usb61_i2¢_set_response_data(hDeviceHandle, ResponseBytes, ResponseBuf);

// Waiting for receving data as I2C slave

// Save device handle

g_hwnd = hwnd;

// By using user-message, be notified the event of receipt

usb61_i2c_read_slave(hDeviceHandle, RS NOTIFY_USER_MSG, NULL, g_hwnd);

(When noitfied by event of receipt, receive user-message and display the transmission of data from the 12C

master device.)

‘ RATOC
Systems, Inc.

http://www.ratocsystems.com/

©RATOC Systems, Inc. All rights reserved.

	REX-USB61 User's Manual
	1. Introduction

	(1-1)Specifications of the product
	(1-2)Package contents
	(1-3)Cable Specifications
	(1-4) Each mode
	(1-5) Connection of a SPI device
	SPI Connection(If a target device has power supply)
	SPI Connection(If a target device doesn’t have power supply)

	(1-6) Connection of a I2C device
	I2C connection(If a target device has power supply)
	I2C connection(If a target device doesn’t power supply)
	I2C connection [1MHz-SCL / 1MHz-SDA](If a target device has power supply)
	I2C connection [1MHz-SCL / 1MHz-SDA](If a target device doesn’t have power supply)

	2. Setting up on Windows

	(2-1) Set up on Windows 10/8.1/7/
Vista x64
	(2-2) Setting up on Windows Vista x32
	(2-3) Setting up on Windows XP x32/XP x64
	(2-4) Confirmation of setting REX- USB61
	(2-5) Uninstallation on Windows 10/8.1/7
/Vista x64
	(2-6) Uninstallation on Windows Vista x32/XP x32/XP x64

	3. SPI/I2C Control Utility

	(3-1) Functions of the utility
	(3-2) Explanation of the utility
	(3-3)Example to control by using this utility
	SPI master mode
	I2C master mode
	I2C slave mode

	(3-4)Grammar for script description
	Common command for SPI/I2C
	Command for I2C only
	Command for SPI only
	How to use REPEAT command

	(3-5)Example of script

	4. API function reference
	(4-1) Using on VC

	(4-2) Using onVB / Visual C#

	(4-3) List of API Functions

	(4-4) Detail of API functions

	(4-5) Error Codes

	(4-6) Sample Applications

	(4-7) How to develop application using this API functions

