Recipe for Raspberry Pi by RATOC

Raspberry Pi I2C 絶縁型 シリアルボード

RPi-GP60

ユーザーズマニュアル

Raspberry Pi I2C 絶縁型 シリアルボード RPi-GP60

目次

安全にお使いいただくために	
第1章 はじめに ――――――――――――――――――――――――――――――――――――	
1-1) ご使用の前に(内容物の確認)	(3)
1-2) 機能概要	(3)
1-3) 製品仕様・ハードウェア仕様	(4)
第2章各部名称と説明 ————————————————————————————————————	
2-1) 基板構成	(5)
2-2) 各端子コネクタについて	(6)
GPIO 40PIN	(8)
シリアルポート	(9)
外部 5V 入力ネジ端子	(11)
第3章 RPi-GP60 の設定と装着 ————————————————————————————————————	
3-1) 各種ハードウェア設定	(8)
3-1-1) I2C アドレスの設定	(8)
3-1-2) シリアル通信機能の設定	(9)
3-1-3) 外部電源の設定	(9)
3-1-4) RS232 ドライバ / レシーバ	(10)
3-1-5) RS485/422 ドライバ / レシーバ	(10)
3-1-5-1) RS485 半二重接続例	(11)
3-1-5-2) RS422 全二重接続例	(11)
3-1-6) 各規格の比較	(12)
3-2) 本体の組立てと接続	(13)
3-2-1) 40PIN ピンヘッダーの取り付け	(13)
3-2-2) Raspberry Pi ボードとの接続	(13)
3-2-3) シリアルドライバ設定	(14)
3-2-3-1) SC16IS752 の I2C ドライバ登録と確認手順	(14)
第4章 RPi-GP60 の機能と説明 ————————————————————————————————————	
4-1) インターフェイス	(15)
4-1-1) Raspberry Pi GPIO 40Pin	(15)
4-1-2) I2C アドレス	(16)
4-1-3) ポート 0 シリアルコネクタ 4-1-4) ポート 1 シリアルコネクタ	(16)
	(18) (20)
4-1-5) 外部 5V 入力 4-2) シリアルコントローラ	(20)
4-2-1) SC16IS752 レジスタマップ	(20)
4-2-2) ボーレート	(20)

安全にお使いいただくために

◆警告および注意表示◆

⚠ 警告

人が死亡するまたは重傷を負う可能性が想定される内容を示しています。

⚠ 注意

人が負傷を負う可能性が想定される内容および物的損害が想定される内容を示しています。

全警告

- 製品の分解や改造等は、絶対におこなわないでください。
- ●無理に曲げる、落とす、傷つける、上に重いものを載せることはおこなわないでください。
- ●製品が水・薬品・油等の液体によって濡れた場合、ショートによる火災や感電の恐れがあるため 使用しないでください。
- ●煙が出る、異臭や音がするなどの異常が発生したときは、ただちに電源を切り、すべての接続ケーブルを抜いたあと、弊社サポートセンターに連絡してください。

■ ⚠ 注意 |

- ●本製品は電子機器ですので、静電気を与えないでください。
- ●高温多湿の場所、温度差の激しい場所、チリやほこりの多い場所、振動や衝撃の加わる場所、強い 磁気を帯びたものの近くでの使用・保管は避けてください。
- ●本製品は日本国内仕様です。日本国外で使用された場合の責任は負いかねます。
- ●本製品は、医療機器、原子力機器、航空宇宙機器、輸送機器など人命に関わる設備や機器、および 高度な信頼性を必要とする設備、機器での使用は意図されておりません。 これらの設備、機器制御システムに本製品を使用し、本製品の故障により人身事故、火災事故などが 発生した器制御システムに本製品を使用し、本製品の故障により人身事故、火災事故などが発生した 場合、いかなる責任も負いかねます。
 - ●本紙の内容に関しましては、将来予告なしに変更することがあります。
- ●本紙の内容につきましては万全を期して作成しておりますが、万一ご不審な点や誤りなどお気づきの点がございましたらご連絡くださいますようお願いいたします。
- ●本製品は日本国内仕様となっており、海外での保守、およびサポートはおこなっておりません。
- ●製品改良のため、予告なく外観または仕様の一部を変更することがあります。
- ●本製品の保証や修理に関しては、本紙の保証書に記載されております。必ず内容をご確認の上、大切に保管してください。
- ●運用の結果につきましては責任を負いかねますので、予めご了承ください。
- ●本製品の運用を理由とする損失、逸失利益等の請求につきましては、いかなる責任も負いかねますので、 予めご了承ください。
- ●本製品を廃棄するときは地方自治体の条例に従ってください。条例の内容については各地方自治体にお問い合わせください。
- ●本製品および本紙に記載されている会社名および製品名は、各社商標または登録商標です。ただし本文中にはRおよびTMマークは明記しておりません。

Raspberry Pi I2C 絶縁型 シリアルボード RPi-GP60 第1章 はじめに

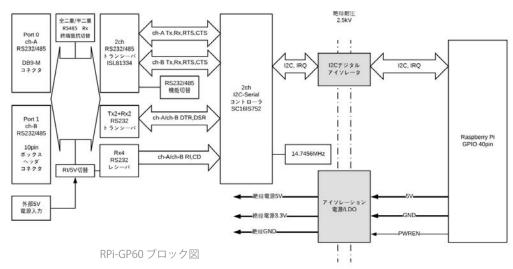
第1章 はじめに

1-1) ご使用の前に(内容物の確認)

RPi-GP60 には以下のものが同梱されています。ご使用前に下記のものが添付されているかをご確認ください。

万一不足がございましたら、誠にお手数ではございますが、弊社サポートセンターもしくはご購入いただいた販売店へご連絡ください。

内容物は以下のとおり


RPi-GP60 本体 x1
GPIO 40PIN ピンヘッダー x1
PRi-GP60 用 10 ピンボックスヘッダ接続用 D-Sub 9 ピンケーブル x1
設定用ショートプラグ x10(うち 2 個は基板へ装着済み)
M2.6 固定用スペーサー x4
M2.6 固定用ネジ x8
保証書 x1

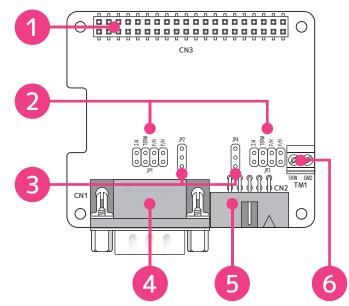
1-2) 機能概要

RPi-GP60 は、Raspberry Pi の GPIO 40Pin(I2C)に接続する絶縁型のシリアル拡張ボードです。 本製品には以下の機能があります。

Raspberry-Pi GPIO40Pin コネクタに装着する絶縁型シリアルボード 2ポートの RS232 もしくは RS485/422 に対応 DB9 x1, 10pin ボックスヘッダ x1 ジャンパ設定で、ポートごとに RS232,RS485/RS422 (半二重 / 全二重) の機能設定が可能 半二重通信は送受信自動切り替えに対応 I2C- シリアル 2 ポートコントローラとして SC16IS752 を使用 シリアルポートは GPIO40pin 間と絶縁 (絶縁耐圧 2.5kV)

1-3) 製品仕様・ハードウェア仕様

名称 / 型番	Raspberry Pi I2C 絶縁型シリアルボード / RPi-GP60		
インターフェイス	GPIO40ピン: I2C		
シリアルポート	2 ポート (D-Sub 9 ピン ×1 ポート、10 ピンボックスヘッダ ×1 ポート) ※10 ピンボックスヘッダ接続用 D-Sub 9 ピンケーブル添付		
シリアル規格	RS232 または RS485/RS422(半二重 / 全二重) に設定切替で対応		
対応ボーレート	110, 300, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, (115200, 230400, 460800, 921600) ※I2C の速度制限 (標準 100kHz) で 115200bps 以上はフロー制御を推奨。 ※RS232C だとトランシーバの制限 (650kbps) で最大 460800bps まで。 ※RS485/422 だと、シリアルコントローラの制限で最大 921600bps まで。		
絶縁耐圧	2.5 k V (PWM 出力 / パルス入出力と GPIO40pin 間) *2 つのシリアルポート間は非絶縁		
静電耐性	15kV		
消費電流	最大 5V/150mA, 3.3V/20mA		
動作環境	温度:0 ~ 40℃、湿度:20 ~ 80%(ただし結露しないこと)		
外形寸法	約 65 x 56.5 mm(突起部含まず)		

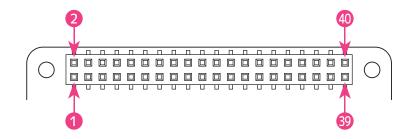

第2章 各部名称と説明

RPi-GP60 の各部名称について説明します。

2-1) 基板構成

基板の各部名称は以下のとおりです。

RPi-GP60


1	GPIO40 ピンコネクタ	Raspberry Pi GPIO
2	JP1/JP3 ジャンパピン	CN1 及び CN2 コネクタ用 通信設定
3	JP2/JP4 ジャンパピン	CN1 および CN2 (CI [RI])用 電源設定
4	CN1 DB-9 コネクタ	シリアルポート 0
5	CN2 10 ピンボックスヘッダ	シリアルポート 1
6	TM1 外部 5V 入力ネジ端子	シリアルポート 9 番ピンへの +5V 供給専用電源入力

※外部電源入力(ネジ端子)の適合電線は AWG26 ~ AWG16, ストリップ長は 5mm です。

2-2) 各端子・コネクタについて

GPIO 40 PIN

GPIO 40 PIN の配列および使用ピンは以下のとおりです。

PIN#	名称	説明	PIN#	名称	説明
1	3.3V	3.3V 電源	2	5V	5V 電源
3	GPIO 2/SDA1	I2C SDA1/GPIO 2	4	5V	5V 電源
5	GPIO 3/SCL1	I2C SCL1/GPIO 3	6	GND	GND
7	GPIO 4	未使用	8	GPIO 14/TXD	未使用
9	GND	GND	10	GPIO 15/RXD	未使用
11	GPIO 17/IRQ	IRQ 入力	12	GPIO 18	未使用
13	GPIO 27	絶縁電源制御	14	GND	GND
15	GPIO 22	未使用	16	GPIO 23	未使用
17	3.3V	3.3V 電源	18	GPIO 24	未使用
19	GPIO 10/MOSI	未使用	20	GND	GND
21	GPIO 9/MISO	未使用	22	GPIO 25	未使用
23	GPIO11/SCLK	未使用	24	GPIO 8/CE 0	未使用
25	GND	GND	26	GPIO 7/CE 1	未使用
27	GPIO 0/ID_SD	HAT_ID 読み込み用 I2C	28	GPIO 1/ ID_SC	HAT_ID 読み込み用 I2C
29	GPIO 5	未使用	30	GND	GND
31	GPIO 6	未使用	32	GPIO 12	未使用
33	GPIO 13	未使用	34	GND	GND
35	GPIO 19	未使用	36	GPIO 16	未使用
37	GPIO 26	未使用	38	GPIO 20	未使用
39	GND	GND	40	GPIO 21	未使用

シリアルポート

シリアルポート 0【DB-9 コネクタ】 シリアルポート 1【10 ピンボックスヘッダコネクタ】

シリアルポート 0[CN1] は Dsub-9 ピンコネクタを使用しています。 シリアルポート 1[CN2] は 10 ピンボックスヘッダコネクタを使用しています。

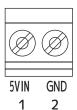
シリアルポート 0 [CN1]

シリアルポート 1 [CN2]

ボード上のジャンパで機能を設定します。

RS-232C, RS-485/RS-422A(半二重/全二重), 終端抵抗の設定が可能です。

RS-232C モードの場合、D-Sub9 ピンの端子配列は EIA-574 規格に準拠します。


RS-485/RS-422A モードの場合、独自の端子配列となります。

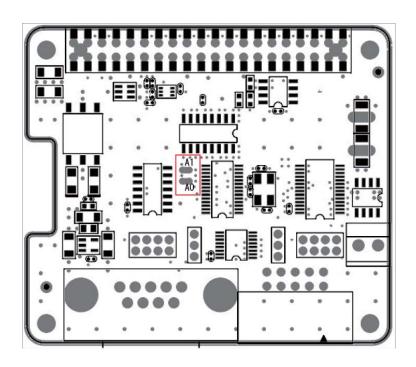
外部 5V 入力ネジ端子

シリアルポート 9 番ピン [RI] を基板上のジャンパ設定で [5V] に切り替えた場合にのみ、この外部 5V 電源を使用します。

5V 入力端子配列は以下のとおりです。

TM NoPin No.	信号名	機能
TM1-1	5V IN	外部 5V 入力(5V±10%)
TM1-2	GND	外部 GND

図:外部 5V 入力ネジ端子


※外部 5V 入力(ネジ端子)の適合電線は AWG26 ~ AWG16, ストリップ長は 5mm です。

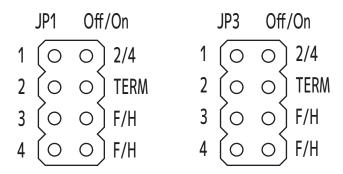
第3章 RPi-GP60 の設定と装着

各種設定と本製品を Raspberry Pi GPIO 40PIN に接続する方法を説明します。

3-1) 各種ハードウェア設定

本製品のハードウェア設定は以下のとおりです。

3-1-1) I2C アドレスの設定


シリアルコントローラSC16IS752のI2Cアドレスを、半田ジャンパ (A0, A1) のオープン/ショート によって設定変更できます。

※初期設定は 0x4D(A0 ~ A1 オープン) です。

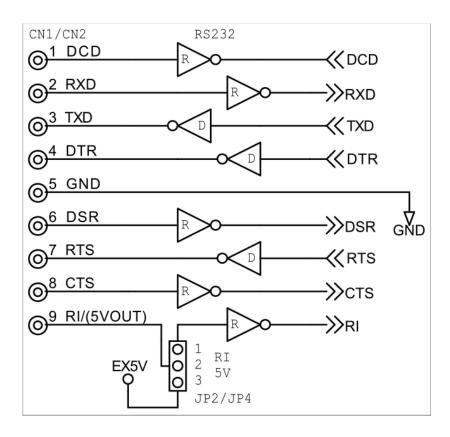
A1	A0	I2C アドレス	備考
オープン	オープン	0x4D	※初期設定
オープン	ショート	0x4C	
ショート	オープン	0x49	
ショート	ショート	0x48	

3-1-2) シリアル通信機能の設定

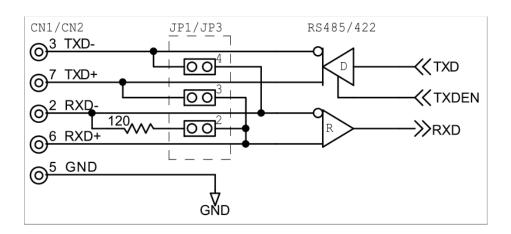
基板上のジャンパ設定ピン JP1 で PortO(CN1),JP3 で Port1(CN2) の通信機能を設定します。 出荷時設定はすべてオープンです。

JP1/JP3 ピンNo	オープン(Off)	ショート(On)	説明
1	RS232	RS485/422	RS232 モードか RS485/422 モードかの設定をします。 出荷時設定はオープンで RS232 モードです。
2	終端抵抗無効	終端抵抗有効	RS485/422 モードで、差動レシーバに 120Ω終端抵抗の無効 / 有効を設定します。 RS232 モードの場合は必ずオープンにしてください。
3	全二重	半二重	RS485 の半二重モードを設定します。 RS232 や RS422(全二重) モードではオープンにして ください。
4	全二重	半二重	RS485 の半二重モードを設定します。 RS232 や RS422(全二重) モードではオープンにして ください。

3-1-3) 外部電源の設定

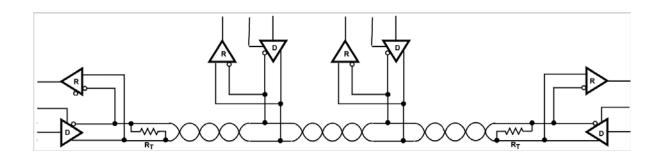

ジャンパ設定ピン JP2 で CN1,JP4 で CN2 の 9 番ピンの機能を、RI とするか外部電源出力とするかの設定をします。出荷時は RI 設定です。

JP2 / JP4	機能	説明
1-2 側ショート	RI	CN1, CN2 の 9 番ピンを RI として設定します。(出荷時設定)
2-3 側ショート	5V	CN1, CN2 の 9 番ピンを外部電源 5V 出力として設定します。


3-1-4) RS232 ドライバ / レシーバ

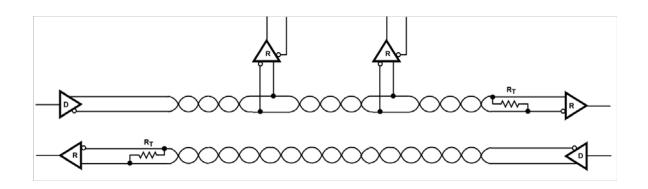
RS232 設定時のドライバ / レシーバ部の回路構成は以下のとおりです。

3-1-5) RS485/422 ドライバ / レシーバ


RS485/422 設定時のドライバ / レシーバ部の回路構成は以下のとおりです。

3-1-5-1) RS485 半二重接続例

デージーチェーン接続された複数のドライバとレシーバで、双方向でのデータ伝送が可能で(マルチポイント方式)、最大 32 台のデバイスが接続できます。


配線長が一番長くなる両端の終端抵抗を有効にし、それ以外の終端抵抗は無効にしてください。 また、電線にツイストペアケーブルを使用することで、電磁誘導などによるコモンモードノイズ を差動レシーバによって効率的に除去できます。

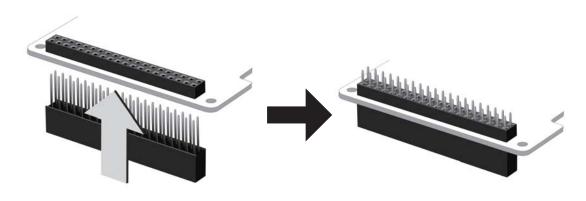
3-1-5-2) RS422 全二重接続例

一つのマスタに対して複数のスレーブを接続できます。ドライバ1台に最大 10 台のレシーバが接続できます(マルチドロップ方式)。配線長が一番長くなるレシーバの終端抵抗を有効にして、それ以外のレシーバの終端抵抗は無効にしてください。

また、電線にツイストペアケーブルを使用することで、電磁誘導などによるコモンモードノイズ を差動レシーバによって効率的に除去できます。

3-1-6) 各規格の比較

規格上は以下のように定められていますが、実際の使用環境では最大値を下回る場合があります。


項目	RS-232C	RS-485	RS-422A
準拠規格	TIA/EIA-232-F	TIA/EIA-485-A	TIA/EIA-422-B
端子配列規格	EIA-574	独自	独自
動作モード	非平衡型 (シングルエンド)	平衡型(差動)	平衡型(差動)
最大接続可能台数	1ドライバ、1レシーバ	32 ドライバ、32 レシーバ 半二重でのマルチポイント方式に 対応	1マスタドライバに10スレー ブレシーバ 全二重でのマルチドロップ方式
最大ケーブル長(規格値)	15m	1200m ツイストペアケーブルを推奨	1200m ツイストペアケーブルを推奨
最大伝送速度(規格値)	20Kbit/s	10m - 35Mbit/s 1200m - 100Kbit/s	1.2m - 10Mbit/s 1200m - 100Kbit/s
最大伝送速度(実力値)	460Kbps	920Kbps	920Kbps
特徴	短距離の1対1通信 全二重	長距離のN対N通信 半二重/全二重	長距離の1マスタ対 Nスレーブ通信 全二重

3-2) 本体の組立てと接続

3-2-1) 40PIN ピンヘッダーの取り付け

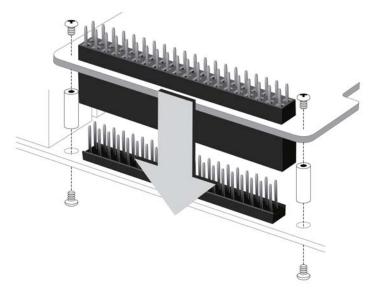
製品付属の 40PIN ピンヘッダーを本製品の底面より垂直に装着します。

※40PIN のピンヘッダーの先端は尖っていますので、怪我には十分ご注意ください。

付属の 40PIN を垂直にセットしてください

装着後はこのようになります

3-2-2) Raspberry Pi ボードとの接続


Raspberry Pi 本体の GPIO ピンヘッダと本製品を接続します。

スペーサー(付属)を本製品本体のネジ穴にあわせ、スペーサーを付属のネジ(4本)で固定し、そのまま RaspberryPi の GPIO ピンへ垂直に差し込みます。

スペーサーが RaspberryPi 基板に合わされば接続は完了です。

あとは RaspberryPi の背面より付属のネジ(4本)を使用し、スペーサーを固定します。

※反対側にも同じようにスペーサーとネジを使用し本体を固定してください。

3-2-3) シリアルドライバ設定

SC16IS752 の I2C ドライバは Raspberry-pi に標準で用意されています。以下の手順で登録することで、2 つのシリアルポートが tty として認識されます。

3-2-3-1) SC16IS752 の I2C ドライバ登録と確認手順

a) config.txt を nano で編集する。

\$ sudo nano /boot/config.txt →

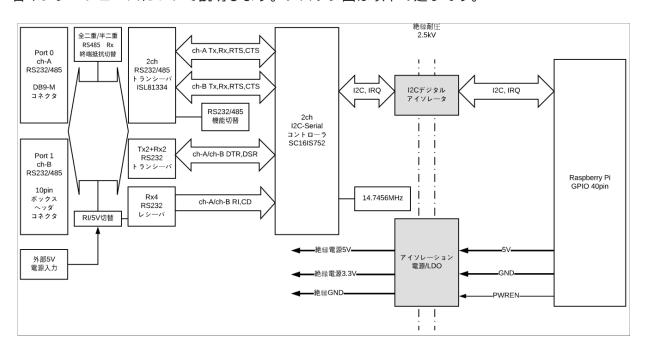
b) 次の行を、開いた config.txt の最終行へ追加する

dtoverlay=sc16is752-i2c,int_pin=17,addr=0x4d,xtal=14745600

「第3章 RPi-GP60の設定と装着」の「3-1-1) I2C アドレスの設定」でアドレスを変更している場合は、表を参考に [addr=0x4d] 部分を書き換えてください。

- c) CTRL+O で書き込み、CTRL+X で終了する。
- d) システムを再起動する。
- e) 再起動後、デバイスツリーに以下の tty ポート [/ttySC0],[/ttySC1] が追加されていることを確認する。

\$ Is /dev/ttySC*
/dev/ttySC0 /dev/ttySC1


以上で、シリアルドライバの設定は完了です。

第4章 RPi-GP60の機能と説明

RPi-GP60 の機能について説明します。

4-1) インターフェイス

各インターフェースについて説明します。ブロック図は以下の通りです。

4-1-1) Rapsberry Pi GPIO 40pin

RPi-GP60 を制御するために、GPIO 40pin の下記の信号を使用します。

制御信号

Pin No.	名 称	機能
3	I2C SDA1	シリアルコントローラ用 I2C
5	I2C SCL1	シリアルコントローラ用 I2C
11	GPIO 17	シリアルコントローラ割り込み要求 1: なし/0: あり
13	GPIO 27	絶縁電源制御出力 1:ON/0:OFF
27	GPIO0/ID_SD	HAT_ID 読み込み用 I2C
28	GPIO1/ID_SC	HAT_ID 読み込み用 I2C

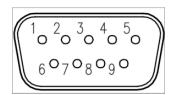
電源端子

Pin No.	説明
1pin 17pin	3.3V
2pin 4pin	5V
6pin 9pin 14pin 20pin 25pin 30pin 34pin 39pin	GND

4-1-2) I2C アドレス

シリアルコントローラを制御するための I2C アドレスは以下のとおりです。

2ポートシリアルコントローラ (SC16IS752)


基板上の半田ジャンパで、シリアルコントローラ (SC16IS752) の I2C アドレス設定変更が可能です。

出荷時の I2C アドレス (7bit) は Ox4D に設定されています。

設定変更方法については「第3章 RPi-GP60 の設定と装着」を参照してください。

4-1-3) ポート 0 シリアルコネクタ

ポート 0 シリアルコネクタの端子配列は以下のとおりです。 基板上のジャンパ設定により、3 種類のモードがあります。

CN1 DB9- オス型コネクタ

PIN No	RS232 信号名*1	1/0	説 明		
1	DCD	I	Date Carrier Detect	キャリア検出入力	
2	RXD	I	Receive Data	受信データ入力	
3	TXD	0	Transmit Data	送信データ出力	
4	DTR	0	Data Terminal Ready	データ端末レディ出力	
5	GND	-	Ground	信号用接地	
6	DSR	I	Data Set Ready	データセットレディ入力	
7	RTS	0	Request To Send	送信要求出力	
8	CTS	I	Clear To Send	送信許可入力	
9	RI/5V*4	1/0	Ring Indicator / 5VOUT	被呼表示入力 / 外部 5V 出力	

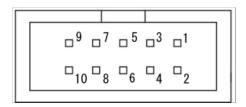
*1: ジャンパピン JP1-1 設定がオープン時 [RS232]

*4: ジャンパピン JP2 1-2 間ショート時 [RI] / 2-3 間ショート時 5V

PIN No	RS485/422 全二重 信号名 *2	1/0	説 明
1	-	1	接続禁止
2	RXD —	- 1	受信データ差動-側入力
3	TXD -	0	送信データ差動-側出力
4	1	1	接続禁止
5	GND	1	信号用接地
6	RXD +	-	受信データ差動+側入力
7	TXD +	0	送信データ差動+側出力
8	-	-	接続禁止
9	(5V)	(O)	(外部 5V 出力)

^{*2:} ジャンパピン JP1-1 設定がショート時 [RS485/422] で、JP1-3,4 設定がオープン時 [全二重]

PIN No	RS485 半二重 信号名 *3	1/0	説 明
1	-	1	接続禁止
2	DATA —	1/0	データ差動-側入出力
3	1	1	接続禁止
4	1	1	接続禁止
5	GND	1	信号用接地
6	DATA +	1/0	データ差動+側入出力
7	-	1	接続禁止
8	-	1	接続禁止
9	(5V)	(O)	(外部 5V 出力)


^{*3:} ジャンパピン JP1-1 設定がショート時 [RS485/422] で、JP1-3,4 設定がショート時 [半二重]

4-1-4) ポート 1 シリアルコネクタ

ポート1シリアルコネクタの端子配列は以下のとおりです。

※付属の Γ 10 ピンボックスヘッダ接続用 D-Sub 9 ピン変換ケーブル (約 10cm)」を接続すると、ポート 0 と同じ端子配列となります。

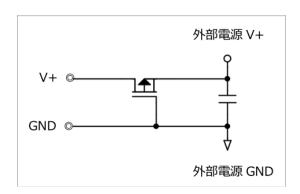
基板上のジャンパ設定により、3種類のモードがあります。

CN2 10 ピンボックスヘッダコネクタ

PIN No	RS232 信号名 *5	1/0	説 明		
1	DCD	I	Date Carrier Detect	キャリア検出入力	
2	RXD	_	Receive Data	受信データ入力	
3	TXD	0	Transmit Data	送信データ出力	
4	DTR	0	Data Terminal Ready	データ端末レディ出力	
5	GND	-	Ground	信号用接地	
6	DSR	_	Data Set Ready	データセットレディ入力	
7	RTS	0	Request To Send	送信要求出力	
8	CTS	I	Clear To Send	送信許可入力	
9	RI/5V*8	I/O	Ring Indicator / 5VOUT	被呼表示入力 / 外部 5V 出力	
10	-	-		未接続	

*5: ジャンパピン JP3-1 設定がオープン時 [RS232]

*8: ジャンパピン JP4 1-2 間ショート時 [RI] / 2-3 間ショート時 5V


PIN No	RS485/422 全二重 信号名 *6	I/O	説明
1	-	-	接続禁止
2	RXD —	1	受信データ差動-側入力
3	TXD -	0	送信データ差動-側出力
4	-	-	接続禁止
5	GND	-	信号用接地
6	RXD +	-1	受信データ差動+側入力
7	TXD +	0	送信データ差動+側出力
8	-	-	接続禁止
9	(5V)	(O)	(外部 5V 出力)
10	-	-	未接続

*6: ジャンパピン JP3-1 設定がショート時 [RS485/422] で、JP3-3,4 設定がオープン時 [全二重]

PIN No	RS485 半二重 信号名 *7	1/0	説 明
1	-	-	接続禁止
2	DATA -	I/O	データ差動-側入出力
3	-	-	接続禁止
4	-	-	接続禁止
5	GND	1	信号用接地
6	DATA +	1/0	データ差動+側入出力
7	-	1	接続禁止
8	-	-	接続禁止
9	(5V)	(O)	(外部 5V 出力)
10	-	-	未接続

*7: ジャンパピン JP3-1 設定がショート時 [RS485/422] で、JP3-3,4 設定がショート時 [半二重]

4-1-5) 外部 5V 入力

外部 5V 入力は、シリアルコネクタの 9 番端子 [RI] が [5V] に設定されている場合のみ使用します。 入力電圧は $5V(\pm 10\%)$ です。

下図のような回路構成で、逆極性接続保護用の P-ch MOSFET が付いています。

4-2) シリアルコントローラ

シリアルコントローラとして、NXP 社 SC16IS752 を使用しています。
I2C アドレス (7bit) の初期値は 0x4D で、基板上のハンダジャンパで設定変更が可能です。
設定方法の詳細については「第3章 RPi-GP60 の設定と装着」を参照してください。

4-2-1) SC16IS752 レジスタマップ

SC16IS752 のレジスタマップは次ページのとおりです。各レジスタの機能詳細については、NXP 社の SC16IS752 データシートを参照してください。

ただし、SC16IS752 のシリアルドライバが TTY としてカーネルから制御されている場合は、ユーザープログラムはレジスタに対して I2C コマンドでのアクセスができません。

python の場合は **pyserial モジュール**を使用することで、ドライバ経由での制御が使用可能です。 pyserial モジュールを使用した**シリアル通信サンプルプログラム**も参照願います。

参照:WEBサイトは以下のURLです。

SC16IS752 データシート(英語)

https://www.nxp.com/docs/en/data-sheet/SC16IS752_SC16IS762.pdf

pySerial's ドキュメントページ(英語)

https://pythonhosted.org/pyserial/index.html

GP60 サンプルプログラムページ(RATOC GitHub ページ)

https://github.com/ratocsystems/rpi-gp60/blob/master/python/README.md

SC16IS752 レジスタマップ

Adrs	Name	Read mode	Write mode
0x00	RHR/THR	Receive Holding Register (RHR)	Transmit Holding Register (THR)
0x01	IER	Interrupt Enable Register (IER)	Interrupt Enable Register
0x02	IIR/FCR	Interrupt Identification Register (IIR)	FIFO Control Register (FCR)
0x03	LCR	Line Control Register (LCR)	Line Control Register
0x04	MCR	Modem Control Register (MCR)	Modem Control Register
0x05	LSR	Line Status Register (LSR)	n/a
0x06	MSR	Modem Status Register (MSR)	n/a
0x07	SPR	Scratchpad Register (SPR)	Scratchpad Register
0x06	TCR	Transmission Control Register (TCR)	Transmission Control Register
0x07	TLR	Trigger Level Register (TLR)	Trigger Level Register
0x08	TXLVL	Transmit FIFO Level register	n/a
0x09	RXLVL	Receive FIFO Level register	n/a
0x0A	IODir	I/O pin Direction register	I/O pin Direction register
0x0B	IOState	I/O pins State register	n/a
0x0C	IOIntEna	I/O Interrupt Enable register	Interrupt Enable register
0x0E	IOControl	I/O pins Control register	I/O pins Control register
0x0F	EFCR	Extra Features Control Register	Extra Features Control Register
0x00	DLL	Divisor Latch LSB (DLL)	Divisor Latch LSB
0x01	DLH	Divisor Latch MSB (DLH)	Divisor Latch MSB
0x02	EFR	Enhanced Features Register (EFR)	Enhanced Features Register
0x04	XON1	Xon1 word	Xon1 word
0x05	XON2	Xon2 word	Xon2 word
0x06	XOFF1	Xoff1 word	Xoff1 word
0x07	XOFF2	Xoff2 word	Xoff2 word

4-2-2) ボーレート

SC16IS752 のクロックとして、14.7456MHz の水晶振動子を使用しています。 代表的なボーレートジェネレータ (DLL,DLH) の設定値は以下のとおりです。

ボーレート [bps]	設定値	備考
110	8378	
300	3072	
1200	768	
2400	384	
4800	192	
9600	96	
14400	64	
19200	48	
38400	24	
57600	16	
115200	8	I2C 速度(標準 100kHz)を超えるためフロー制御の使用を推奨
230400	4	
460800	2	RS232 設定時の上限 (トランシーバー性能の上限)
921600	1	RS485/422 設定時の上限 (コントローラの上限)

RPi-GP60の技術的なご質問やご相談の窓口を用意していますのでご利用ください。

ラトックシステム株式会社 I&L サポートセンター

〒550-0015

大阪市西区南堀江 1-18-4 Osaka Metro 南堀江ビル8F TEL.06-7670-5064 FAX.06-7670-5066

<サポート受付時間>

月曜-金曜(祝祭日は除く)

AM 10:00 - PM 1:00

PM 2:00 - PM 5:00

また、インターネットのホームページでも受け付けています。

https://www.ratocsystems.com

⚠ 個人情報取り扱いについて

ご連絡いただいた氏名、住所、電話番号、メールアドレス、その他の個人情報は、お客様への回答など本件に関わる業務のみに利用し、他の目的では利用致しません。

Raspberry Pi I2C 絶縁型 シリアルボード RPi-GP60 ユーザーズマニュアル Rev 2.0

